
Applying Force Fields To Black-Box GUIs Using Computer Vision

Florian van de Camp
Fraunhofer IOSB

Karlsruhe, Germany
florian.vandecamp@iosb.fraunhofer.de

Rainer Stiefelhagen
Karlsruhe Institute of Technology, Fraunhofer IOSB

Karlsruhe, Germany
rainer.stiefelhagen@kit.edu

Abstract

While new input modalities emerge, many established
applications have not been adjusted to these new possibil-
ities of interaction. Assisting technologies like force fields
have been shown to enhance interaction, but rely on context
information that is not provided by existing applications.
We present a computer vision based approach that can au-
tomatically locate user interface elements to apply assisting
technologies to any application without modification. In a
user study we show that user interface elements can be de-
tected reliably and allows for automatic placement of force
fields that improve interaction in both speed and accuracy.
Our approach makes new interaction modalities like point-
ing gestures usable with existing applications without need
for modification or adaptation.

1. Introduction
As new input modalities emerge, specifically tailored

user interfaces become more popular which better support
the properties of these often less accurate but more natural
modalities. Larger user interface elements, more space be-
tween elements and visual feedback are only a few of the
adaptations that make applications usable for input modali-
ties like touch and pointing. This is necessary, because even
if systems that detect pointing gestures will get more accu-
rate, humans are not able to move their arms perfectly ac-
curate or point perfectly steady towards a target, especially
from a distance.
Another way of adapting interfaces to work better with
these modalities are assisting technologies that have
been shown to enhance interaction speed and robust-
ness [2][3][13] but rely on context information. In many
cases adaptation or even rewriting of applications is not
an option, so the required information about the location
of user interface elements is not available. In high secu-
rity environments such as control rooms, interfaces are of-
ten streamed over a network and only mouse and keyboard
events are send to the machine. To still be able to make

use of these new input modalities, the user input has to
be mapped to input events known to the applications, like
mouse clicks and movements but still deal with the inaccu-
racies to make todays applications usable with tomorrows
input modalities.

2. Related Work

Assisting technologies have mostly been applied to
mouse interaction. Ahlström et al. [2] have shown that force
fields improve pointing performance in realistic GUI situa-
tions. Force fields warp the cursor towards the center of a
target within an area around it with a fixed strength. Since
todays GUIs are mostly tailored towards mouse interaction,
most user interface elements can be considered rather small
for less precise modalities. Especially for such small tar-
gets, assisting technologies can significantly improve inter-
action [3]. With knowledge of the locations of interface
elements, several other assisting technologies can be ap-
plied [13, 9, 7]. Guiard et al. [8] take this knowledge to
the extreme with “Object Pointing”, where the cursor al-
ways jumps to the closest interface element. While fast,
this might be irritating with a direct input modality such as
pointing. Analyzing the screen at run time is not uncom-
mon. Yeh et al. [14, 5] developed “Sikuli” a tool that can
query databases for documentation using screen shots of
windows or dialog boxes using template matching and local
features. Instead of using a computer vision approach, both
Burschka et al. [4] and Memon at al. [10] rely on querying
operating system specific functions to analyse the layout of
user interfaces, one for interfacing a visual touch system
the other for automated software testing. Dixon at al. [6]
analyse screen content with their Prefab system. Unlike our
system, they rely on a database of features created offline
for a specific application or interface that are compared to
the screen content for locating known elements.

3. Design and Implementation

There are two aspects to controlling existing applications
with new input modalities while making use of assisting

1



Figure 1. Cursor icons to indicate click progress.

technologies. First, we need to be able to emulate the kind
of input events current applications understand, like mouse
movements and clicks. This is easily possible on any major
operating system. Secondly, we need to know where user
interface elements are. Since existing GUIs are not aware
of the input modalities, that information is not available and
as windows can be moved and resized, locations can change
all the time. We exploit the fact that interface elements are
usually quite distinctive and present a template matching
based approach to automatically locate user interface ele-
ments on the screen. While it is possible to provide the
system with widgets up front, the focus lies on extracting
and learning the appearance of interface elements on the fly
by observing user behaviour. The gained knowledge about
widget locations is then used to place force fields that en-
able the use of pointing interaction for existing applications
tailored towards mouse input.

3.1. Screen scraping and cursor manipulation

The complete screen can be captured very efficiently on
any major operating system as demonstrated by the vari-
ety of screen sharing applications. Manipulating the mouse
cursor position as well as triggering clicks is also possible
programmatically on any major operating system. The con-
trol of the cursor allows warping of the cursor position de-
pending on the position of interface elements which is the
main requirement for most assisting technologies. A pop-
ular method for triggering clicks using pointing gestures is
a dwell timer, where keeping the cursor still for a certain
duration will trigger a click. An important aspect to making
this technique intuitive is visual feedback. In many cases
it is possible to modify the mouse cursor icon to give the
user visual feedback about the click progress as illustrated
in Figure 1, even without access to or modification of the
target application.

3.2. Template Matching

Most desktop applications are built using GUI toolkits
that provide a limited number of user interface elements.
These elements always look and work the same as this helps
users to understand new applications. This property makes
template matching a suitable technology for locating user
interface elements. While template matching is not robust
enough for most computer vision applications due to sen-
sor noise and scene clutter, this is not the case when work-
ing with screen captures. The appearance of an object is
identical in each frame and the same types of elements (e.g.
buttons or check boxes) are still very similar despite differ-

Figure 2. The mouse cursor indicates the click position, the red
boundaries show the extracted contour.

Figure 3. Creation of an initial target model (Anchor points are
indicated by the red dots).

ent states or labels. Since the number of common GUI ele-
ments is limited and the elements are known, templates can
be created that can locate elements via cross-correlation on
the current screen capture. While this basic approach works
well for many scenarios of well known environments, in the
real world we can not expect to know the appearance of
all interface elements up front. Skinnable applications and
even operating systems as well as the virtually unlimited de-
sign possibilities on the web limit any approach that relies
on knowing what an interface will look like.

We do, however, have another source of information
about where user interface elements are located: the user in-
put. It is very likely that whenever a user triggers a click the
mouse cursor location is on an interface element. In the next
section we describe how we automatically extract previ-
ously unknown user interface elements using this informa-
tion and besides using the template directly to locate more
widgets, refine the template over time to create a model that
generalizes to widgets that vary in size and appearance.

3.3. Automatic Template Learning

Whenever a click occurs, the surrounding area in the cur-
rent screen capture is scanned for potential textures to be
used as a template by performing canny edge detection on
the area around the click in the captured screen. Since user
elements are usually designed to stand out and be easily rec-
ognizable, the outlines of a widgets are extracted very accu-
rately. Larger contours are found in these outlines using the
Teh-Chin chain approximation algorithm [12]. Comparing
the location of the click with all found polygons using the
point-in-polygon test, we find candidates for widget bound-
aries. From these candidates the first enclosing, convex con-
tour is picked. Three examples can be seen in Figure 2, the
mouse pointer shows the position of the click, the red rect-
angle the extracted contour.

While it is possible to directly use the extracted area as
a template, it will only find identical or very similar wid-
gets. In order to allow the model to match instances of



Figure 4. Generalisation of an initial target model.

Figure 5. Automatic generalization (transparent pixels are drawn
red for visualisation).

Figure 6. Patch alignment for refinement.

the same widget with different sizes, we represent widgets
by parts that can move with respect to each other. We de-
fine these parts as follows. The extracted area is expanded
by 5 pixels in all directions and split into 4 parts of equal
size by splitting the area along the horizontal and vertical
axes (Figure 3). This way, the distinctive gradients are pre-
served and the four image patches are saved along with an
anchor point for each. The anchor point for each patch is the
point on the gradient furthest away from the original wid-
gets center. This constitutes a first target model which can
be used to find widgets by matching all four patches on the
screen. Taking their layout into account, correct targets can
be found in the list of matches. This means, for an exam-
ple, that the top right patch always has to be right of the top
left patch but on the same vertical position. Also, there can
not be any other matches in between a top left match and a
top right match. Since user interface layouts are very struc-
tured and matches are very reliable because of the consis-
tent appearance of interface elements, this heuristic allows
to filter out any incorrect match combinations. For some
widgets the split of the original template already allows for
some generalization. For an example, empty line edits or
text boxes of most sizes will be found after a first line edit
or text box has been extracted (See Figure 4).

However, other widgets differ more from each other and

are usually not found using the model created from the first
extracted target. To not only find widgets that are identical
to widgets that have already been selected (allowing support
from every second click on) we automatically generalize the
existing model as more widgets are extracted. To success-
fully generalize an existing model using a new extraction,
we need to make sure the widgets are of the same type. To
check for matching, existing target models we align the cor-
responding patches of the extracted model with those of the
existing models. There have to be at least 20 connected
pixels identical in both patches for all four corner patches
to consider an existing model to match the newly extracted
one. If the extracted model matches an existing one, the
existing model is refined. The refinement is repeated for
each pair of corresponding patches of the two models. After
alignment of the patches at their anchor points the patches
are reduced to the overlapping area (Figure 6). The patches
are then compared pixel for pixel and pixels that differ are
set to transparent. Transparent pixels are simply ignored
when the patch is later used for template matching on the
screen. Figure 5 shows how the original patches of the first
model (top) are generalized to match the second target (bot-
tom) as well. The initial constraint of identical pixels in
both patches avoids extreme over generalization. In addi-
tion the refined patch has to contain edges to avoid ending
up with a homogeneous patch that would not allow for suf-
ficient distinction. If this condition is satisfied for all four
refined patches the refinement is considered successful and
applied to the existing model. The newly extracted model
is then deleted as it becomes redundant. If the refinement
does not succeed, however, the original model is not modi-
fied and the newly extracted model is kept. This guarantees
that the new target and any identical targets will be found at
the price of increasing the runtime slightly.

3.4. Runtime considerations

Considering display resolutions of large displays and
video walls common for pointing interaction, shifting the
templates over the whole image can be time consuming.
The generalizing models that are build on the fly avoid the
need for separate templates for every individual target and
therefor provide a significant speed up. Since we know
where a user is pointing, there is no need to enhance ev-
ery interface element at all times. Instead, templates are
only matched against a region of 500px × 500px around
the pointing direction. A target can be matched against the
500px × 500px region in 70ms, with a common set of 10
targets this still allows an update rate for force field posi-
tioning of 1.4fps which is sufficient considering that user
interface elements are mostly stationary. It is important to
point out that this “spotlight” technique results in a constant
runtime, independent of the actual size of a display. Consid-
ering the display sizes common for interaction technologies



Figure 7. Sample of web buttons for automatic widget extraction.

like gestures and pointing, this property is essential for real
world use.

4. Evaluation

For the evaluation of our system we conducted several
experiments to to analyze the three main aspects: target ex-
traction, target matching and target model generalization,
individually. Those are described along with with the re-
sults in section 4.1. In addition, we applied our system to
automatically place force fields on an application to enable
pointing interaction with small targets on a large video wall.
We conducted a user study in which participants were asked
to try three variants of a pointing system. First the pointing
system was used without any assisting technologies (NFF),
second, force fields were placed based on the detected loca-
tions of the template matching system using manually cre-
ated templates (MTFF) and third, force fields were placed
based on templates learned from user clicks on the fly as de-
scribed above (ATFF). We did not use a variant with manu-
ally annotated force field locations as the manually created
templates detected every button of the interface and there-
fore annotated force fields would have been identical.

4.1. Template learning

The extraction of targets based on a single observed click
worked for any of the standard widgets of the major operat-
ing systems (Windows 7, OSX Lion, Ubuntu 12.04 (all with
their default theme)) without failure. Because especially
widgets that are not common are interesting for the auto-
matic extraction as those can not be supplied up front, we
evaluated the extraction of a wide variety of buttons from
the web (see Figure 7). To make sure that the position of
a click did not influence the results we had four different
users click all 209 buttons 10 times. In average, 198 of the
209 buttons were extracted successfully after a single click
on each button. After the first click on a target an initial
target model is created as described above. Matching this
target or any identical target works without failure as they

Figure 8. Variety of widgets to test model refinement.

match pixel for pixel.
The model refinement is especially interesting for wid-

gets that vary in size and appearance. To evaluate how well
and how fast a target model can be refined to match all wid-
gets of the same type, we created a test interface with 38
buttons, 15 text fields and 15 line edits of varying sizes and
labels for each of the major operating systems. An exam-
ple of such an interface can be seen in Figure 8. We then
asked ten users to randomly click on the buttons, line edits
and text fields and without the users knowledge, logged to
how many buttons the target models generalized after each
click. In average it took 3.4 clicks on buttons, 4.4 clicks
on text fields and 3.9 clicks on line edits for the respective
model to generalize to all elements.

4.2. Application to pointing interaction

The experimental setup consisted of a pointing gesture
recognition system that creates a 3D reconstruction of per-
sons using multiple, overlapping video cameras and pro-
vides the intersecting point of the pointing direction of an
extended arm with a display (see [11] for details). For the
display we used a 4m × 1.5m back projection video wall
(resolution 4096px × 1536px). Using the pointing system,
users are able to move the mouse cursor across the video
wall by simply pointing towards the desired location. The
position is updated with 30Hz and a click is triggered us-
ing a dwell timer described above with a trigger duration of
1sec. The cursor icon was changed to three different icons
to indicate the click progress (Figure 1). For an application,
we used a simple layout (depicted in Figure 9) with buttons
arranged in a circle to satisfy the ISO 9241 [1] requirements.
The application had no interface to our system but accepting
mouse input. The application was in no way aware of the
pointing system or any assisting technologies. Ten (9 male)
users aged between 22 and 32 participated. Eight of those
were right handed and all used their primary arm for the en-
tire experiment. Eight of the users had prior experience with
pointing gesture interaction. All 10 participants had normal



Figure 9. User interacting with pointing gesture.

or corrected to normal sight. The average height of partic-
ipants was 176.8cm while buttons were placed at heights
from 108cm to 205cm from the ground.

For evaluation, participants had to perform a multi direc-
tional pointing task as suggested in part 9 of the ISO 9241
standard [1]. Circles of 1000px diameter and 600px diam-
eter with 15 buttons each (sized 80px× 30px) were used to
fulfill the ISO standard suggestion of varying the task pa-
rameters. The order of buttons following the ISO standard
was indicated by numbered labels on the buttons. In addi-
tion, the current target was labeled in green while all other
buttons were labeled in red (The order can be seen in the
red annotations of Figures 10(a)-10(c)). Users were encour-
aged to experiment with the pointing system before the start
of the experiment. Users were then consecutively presented
with the two circle layouts for each of the three variants of
the pointing system. The order of variants was randomly
chosen for each participant. Because pointing gesture inter-
action in front of a large video wall can be tiring, users were
free to take breaks in between circles. With a small mark
on the floor for users to stand on (at 92cm from the video
wall), we minimized any influence of the distance from the
wall it might have had on the accuracy of the pointing sys-
tem. Users were encouraged to select the targets as fast as
possible but asked to balance speed and accuracy.
As in [2] we used a force field with the strength 0.8, as well
as a force field size of 60px.

During the experiment all cursor movements as well as
clicks, clicked buttons, the current target and the offset of
a click to the button center were recorded. From this data
we calculated the time it took to perform clicks as well as
the accuracy with which buttons were clicked. To com-
pare the time it took to click a button with each technique,
the time between clicks on targets was measured. To be
able to compare these durations despite the different lay-
outs (small and large circle layout), we normalized the val-
ues to a distance of 500px. In addition, users were given a
short questionnaire to compare the participant’s impressions
to the measured results. The fastest (average time between

(a) No force fields

(b) Force fields from manually created templates

(c) Force fields from automatically created templates

Figure 10. Heat maps of cursor positions.



clicks) variant was MTFF (3.5sec) which shows a signifi-
cant improvement over NFF (4.66sec). But not only force
fields placed using manual templates improved the interac-
tion time, the ATFF variant also showed a similar improve-
ment (3.66sec). The same is true for the accuracy (offset be-
tween click and button center) which with buttons were hit
(NFF:17.12px, MTFF:5.25px, ATFF:8.59px). These mea-
sured results are also reflected in the answers to the question
which variant was perceived as the fastest: NFF:0 , MTFF:
4 , ATFF: 5 , MTFF+ATFF: 1. All participants could imag-
ine using the pointing system with exiting desktop applica-
tions. However, only two persons could imagine this with
variant NFF (NFF:2, MTFF: 9, ATFF: 8) (Multiple choices
were allowed for all questions).
No force fields at non button locations were created due
to erroneous template matches with either MTFF or ATFF
during the experiment. From the cursor positions over the
course of the experiment, we created heat maps to analyze
the movement properties of the different variants in more
detail. Comparing Figures 10(a) and 10(b) the effect of the
force fields can be clearly seen. In Figure 10(b) the mouse
positions are perfectly concentrated around the button cen-
ters. Figure 10(c) shows the heat map for the automatically
acquired target models. Looking at the annotated button
layout, the very different accuracies around buttons are not
surprising. For the first button, there was no information yet
where buttons were located and therefore no force field ac-
tive. With every click it became more likely for the model
to generalize to the other targets to locate all other buttons,
which leads to a gradual increase in accuracy following the
order in which buttons were clicked.

5. Conclusion
In this paper we presented an approach to extracting con-

text information from any application without modification,
which can be used to utilize assisting technologies like force
fields. We presented an algorithm that automatically ex-
tracts target user interface elements by observing user be-
haviour, and creates target models without any prior knowl-
edge about the targets and without any manual intervention.
With a spotlight approach to the matching algorithm the
runtime of the system remains constant even for large video
walls which makes it suitable for the use with novel input
technologies that often rely on assisting technologies be-
cause of their often lower accuracy. It allows the use of new
input modalities with established real world applications.
In an evaluation we have shown that the system works for
a wide variety of widgets and integrated it into a pointing
system to evaluate real world use. The results show that
the automatically placed force fields improve interaction in
both speed and accuracy. The proposed technologies en-
able the use of pointing gesture systems to control existing
real world applications without modification of target ap-

plications and are able to bridge the gap between current
advancements in interaction technology and the reality of
established, mouse and keyboard centric applications.

References
[1] ISO 9241-11: Ergonomic requirements for office work with

visual display terminals (VDTs) – Part 9: Requirements for
non-keyboard input devices. 2000. 4, 5

[2] D. Ahlström, M. Hitz, and G. Leitner. An evaluation of sticky
and force enhanced targets in multi target situations. In 4th
Nordic conference on Human-, number October, pages 14–
18, 2006. 1, 5

[3] S. B. Andy Cockburn. Multimodal feedback for the acquisi-
tion of small targets Multimodal feedback for the acquisition
of small targets, 2005. 1

[4] D. Burschka, G. Ye, J. J. Corso, and G. D. Hager. A practical
approach for integrating vision-based methods into interac-
tive 2d/3d applications. Technical report, The Johns Hopkins
University, 2005. 1

[5] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using
computer vision. In International conference on Human fac-
tors in computing systems, CHI ’10, pages 1535–1544, New
York, NY, USA, 2010. 1

[6] M. Dixon and J. Fogarty. Prefab: implementing advanced
behaviors using pixel-based reverse engineering of interface
structure. In Proceedings of the 28th international con-
ference on Human factors in computing systems, CHI ’10,
pages 1525–1534, New York, NY, USA, 2010. ACM. 1

[7] T. Grossman. The bubble cursor: enhancing target acquisi-
tion by dynamic resizing of the cursor’s activation area. of
the SIGCHI conference on Human, (c):281–290, 2005. 1

[8] Y. Guiard and R. Blanch. Object pointing: a complement to
bitmap pointing in GUIs. Proceedings of Graphics, pages
9–16, 2004. 1

[9] P. Kabbash and W. A. S. Buxton. The ”prince” technique. In
Proceedings of the SIGCHI conference on Human factors in
computing systems CHI 95, pages 273–279, 1995. 1

[10] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Re-
verse engineering of graphical user interfaces for testing. In
Working Conference on Reverse Engineering, WCRE ’03,
pages 260–, Washington, DC, USA, 2003. IEEE Computer
Society. 1

[11] A. Schick, F. v. d. Camp, J. Ijsselmuiden, and R. Stiefelha-
gen. Extending touch: towards interaction with large-scale
surfaces. In ACM International Conference on Interactive
Tabletops and Surfaces, pages 117–124. ACM, 2009. 4

[12] C. H. Teh and R. T. Chin. On the detection of dominant
points on digital curves. IEEE Trans. Pattern Anal. Mach.
Intell., 11(8):859–872, Aug. 1989. 2

[13] A. Worden, N. Walker, K. Bharat, and S. Hudson. Making
computers easier for older adults to use: area cursors and
sticky icons. ACM Conference on Human Factors in Com-
puting Systems, pages 266–271. ACM New York, NY, USA,
1997. 1

[14] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui
screenshots for search and automation. UIST ’09, pages
183–192, New York, NY, USA, 2009. ACM. 1


