FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY

DEVICE AND RELIABILITY

Ceramic Embedding Technologies for High Temperature Power Electronics

Linh Bach, Zechun Yu

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

- - Power
 - Temperature
 - Switching speed
 - Reliability

*Down-hole oil & gas well drilling

Aviation

Aerospace

Electric Vehicles Technology IISB

HT Sensor Technology IISB

WBG Device technologies

SiC devices

GaN devices

and other (Ultra) WBG... e. g. Diamond

Die attach material

HT solder alloys AuGe, AuSn, diffusion solder, etc.

https://www.indium.com/nanofoil/

and more....

Cu sinter paste

Power module concept

Hermetic packages

http://www.hybridassembly.net/HermeticSeamSealing/

Double sided cooled packages

Z. Liang et al.: Integrated double sided cooling packaging of planar SiC power modules

PCB Embedding

GaNPX® package

p² Pack®.

- Features of State-of-the-Art PCB embedding (organic insulation)
 - Miniaturization \rightarrow no housing, 3D-integration, reduction of connection points
 - High switching → short current paths, vias instead of bond wires, low parasitic inductance
 - More efficient cooling → double-sided cooling, thermal vias

Stahr et al.: Simulation of Embedded Components in PCB Environment and Verification of Board Reliability

Boettcher et al.: Embedding of Chips for System in Package realization - Technology and Applications

- Additional features with Ceramic embedding
 - High temperature capability (> 200 °C)
 - High thermal conductivity (Al_2O_3, AlN, Si_3N_4)
 - High current carrying capability (Cu layer > 300 μm)
 - High corrosion resistance (ceramic)
 - Low CTE-Mismatch

Packaging solution for taking out full potential of WBG

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

Concept of DBC Embedding

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

Evaluation of Embedding Process - Laser processing

- Ultra short pulse laser processing of DBC substrate
 - Rapid prototyping and design flexibility
 - Sufficient surface quality for packaging process

- Laser system used
 - Femtosecond laser, 1030 nm (infrared), 800 fs
- Specimen tested
 - DBC substrate, Cu/ Al_2O_3 / Cu (100/ 380/ 100 µm), 20 mm x 20 mm

- Femtosecond laser
- High precision structuring
- No crack occurrences in Al₂O₃ and Cu
- No remained Cu₂O on the surface

- Nanosecond laser, 355 nm (UV)
- Effective structuring of Al₂O₃ and Cu
- Crack occurrences in Cu
- Remained Cu₂O on the surface

- Comparison of solder quality on laser structured DBC substrate
- Solder preform in structured Cu layer, soldered at 240 °C, nitrogen atmosphere
- Nanosecond laser → bad wetting behavior, insufficient surface quality of Cu
- Femtosecond laser → good wetting behavior, smooth surface of Cu

Evaluation of Embedding Process - Die Attach Process of Power Semiconductor

- Jet printing of Ag paste in laser structured DBC
 - Dot line thickness ~ 80 µm per layer
 - Drying process at 80°C for 60 min
 - Sinter layer thickness reduced by 50% after drying

Ag sinter layer (jet dispensed)

Evaluation of Embedding Process - Die Attach Process of Power Semiconductor

- SiC JBS-diode sintered onto structured DBC substrate
- Pressure-assisted sintering
 - 250°C sinter temperature, 5 min sinter time, 4 MPa sinter pressure

Evaluation of Embedding Process - Die Attach Process of Power Semiconductor

- Sealing of the package with a Cu cover
- Pressure-assisted sintering
 - 250°C sinter temperature, 5 min sinter time, 4 MPa sinter pressure

Evaluation of Embedding Process - Die Attach Process of Power Semiconductor

- SiC JBS-diode **sintered** onto structured DBC substrate
- Even distribution of sinter layer after sintering
- No chip crack detected

Scanning acoustic microscopy analysis

Evaluation of Embedding Process - Die Attach Process of Power Semiconductor

- Cross section of SiC JBS-diode embedded DBC substrate by Ag sintering
- No critical voids and cracks in the sinter bond line
- Good joining quality of Cu, Ag paste and chip metallization

Evaluation of Embedding Process - Potting Process of Embedded DBC Package

- Dispensing of potting system inside DBC package
 - High temperature capability up to 250 °C (silicon gel)
- Filling DBC package through lasered holes

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

Test and Result

- Sealing and measuring of embedded package with Cu cover
- Current and blocking characteristics correspond to values from data sheet
 - Diode turn on @ ~1.2 V, blocking voltage up to 3.3 kV
- Pre-package showed no failure up to 250°C during measurement

Test and Result

- Stacking of single embedded SiC diode pre-packages
- Pre-packages connected in series
- Total package thickness of 5.4 mm
- Blocking voltage measured up to 12.5 kV

Technological feasibility confirmed

- Motivation for Ceramic Embedding
- Concept of DBC Embedding
- Evaluation of Embedding Process
 - Laserstructuring Process of DBC Substrate
 - Die Attach Process of Power Semiconductor
- Test and Result
- Summary and Conclusion

Summary and Conclusion

- Ceramic embedding seems promising for WBG and high temperature applications above 300 °C
- Laser process can be rated as potential application for ceramic embedding
 - Femtosecond laser for high-precision material ablation → high embedding quality (chip soldering and sintering)
- Soldering and silver sintering suitable for chip embedding process
- Electrical functionality of DBC embedded package (up to 250°C; 12.5 kV) tested and validated
- DBC embedded package compact, robust and easy to use for system users
- Long-term tests, lifetime and reliability still under investigation

THANK YOU FOR YOUR ATTENTION!

Fraunhofer IISB

Schottkystraße 10 91058 Erlangen Germany

Linh Bach

linh.bach@iisb.fraunhofer.de +49 9131 761-616

www.iisb.fraunhofer.de

Contact

