
Towards Automatically Generating Security
Analyses from Machine-Learned Library Models

Maria Kober[0000−0001−9560−1527] and Steven Arzt[0000−0002−5807−9431]

Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany
{maria.kober, steven.arzt}@sit.fraunhofer.de

Abstract. Automatic code vulnerability scanners identify security an-
tipatterns in application code, such as insecure uses of library methods.
However, current scanners must regularly be updated manually with new
library models, patterns, and corresponding security analyses. We pro-
pose a novel, two-phase approach called Mod4Sec for automatically gen-
erating static and dynamic code analyses targeting vulnerabilities based
on library (mis)usage. In the first phase, we automatically infer semantic
properties of libraries on a method and parameter level with supervised
machine learning. In the second phase, we combine these models with
high-level security policies. We present preliminary results from the first
phase of Mod4Sec, where we identify security-relevant methods, with
categorical f1-scores between 0.81 and 0.93.

Keywords: Vulnerability scanner · Vulnerability detection · Security
analysis · Specialized domain language · Automated analysis · Mod4Sec

1 Introduction and Motivation

Implementation flaws are prevalent in software. While modern platforms and
operating systems offer powerful APIs for sensitive security operations such as
encryption or authentication, developers often misuse these APIs, leading to
numerous vulnerabilities [2, 1]. Manual approaches like penetration tests or code
reviews can detect such vulnerabilities but require substantial effort. They are
therefore unsuitable for agile development processes with fast release cycles [9].
Automated code scanning [4, 13, 16, 3, 11, 15] can identify known antipatterns in
code, but requires the respective patterns. If a scanner has no support for the
respective API, i.e., no antipatterns to look for, the security vulnerability remains
undetected. Such scanners need to be updated regularly with new antipatterns,
which is largely a manual effort. For example, on popular platforms like Android
more than 13,700 third-party libraries are used in apps additional to the Java
Standard Library and Android SDK, according to our pre-study on 9,373 apps
from the 2020 and 2021 Google Play Store. If only considering libraries that
are used in at least 10% of Android apps, a code scanner must be kept up-to-
date with 65 libraries, yet vulnerabilities regarding other libraries would remain
undetected. New library versions may become available in frequencies of several
days to months [17, 5], leading to constant requirements for manual maintenance.



2 Maria Kober and Steven Arzt

In this paper, we present our idea and vision for Mod4Sec, a novel approach
for automatically inferring semantic models of individual libraries and platforms,
i.e., API specifications, and linking them to security policies for program anal-
yses. Library-agnostic security properties such as “cryptographic keys must not
be hard-coded” change rarely. APIs, on the other hand, evolve. We therefore
propose to automatically infer specific library models (e.g., “second parameter
of method encrypt() in class A in library B is a cryptographic key”) and match
them to library-independent security properties (e.g., “RSA keys must be of 2048
bits or more”). This mapping is then used to automatically generate antipatterns
for static and dynamic code analyses. These antipatterns are further processed
to generate analysis code, so that scanners can detect violations of the security
properties in apps that use libraries for which a model has been inferred.

This paper is organized as follows. Section 2 describes details of our vision.
Section 3 presents details on and results of first experiments. Section 4 presents
related work. Section 5 concludes this paper and points out future work.

2 Vision

Our vision is to automatically generate semantic models for libraries and plat-
forms using machine learning, and to use these models to link generic security
assets (keys, passwords, certificates, etc.) to concrete APIs. Thus, we are able
to automatically generate static and dynamic code analyses, thereby reducing
manual effort for tool developers and security analysts.

The core idea behind Mod4Sec is that security properties are derived from
only a handful of core assets and concepts that usually remain unchanged for
years. For example, the concept of a password is the same, regardless of how this
password is used (e.g., for authentication or deriving an encryption key using a
KDF). Likewise, authentication methods that consume passwords are equivalent
from the point of a security scanner, regardless of the target of authentication,
even though the APIs may look differently. We therefore propose to identify
these generic concepts in implementations and documentations of APIs using
machine learning and natural language processing.

In our proposed workflow, a security analyst only needs to reason about
problems within the domain of security, fully abstracting from the concrete im-
plementation of applications and programming libraries. The analyst specifies
properties in terms of abstract domain knowledge such as “MD-4 must not be
used as cryptographic hash function“. The link back to code, i.e., identifying
what should be checked within an application, is done using the auto-generated
library models. As these models are auto-generated, they can easily be updated
by the tool developer when new or updated libraries are available.

Figure 1 shows an overview of our approach, which consists of two phases.
In the first phase, we generate the library models as explained in Section 2.1. In
the second phase, we match them with security policies to generate static and
dynamic analyses as explained in Section 2.2. Additionally, developers can give
feedback on the analysis results, increasing the accuracy of the model over time.



Towards Automatically Generating Security Analyses from Library Models 3

Fig. 1. The two phases of our vision. Input data to generate security analyses is denoted
in gray. Data required solely for training is marked by dashed lines.

2.1 Phase 1: Generate Library Models

In the first phase, Mod4Sec uses supervised machine learning to automatically
associate library methods and method parameters with pre-defined categories,
e.g., “encryption” or “authentication” for methods, and “username”, “crypto
key” or “filename” for parameters. The learning algorithm learns on a set of
implementation JAR files and the corresponding JavaDoc JARs. The resulting
Generic Domain Model, an integral part of the Library Model Builder in Figure 1,
generalizes over all input libraries and is therefore library-agnostic. It can be re-
used for classification whenever new or updated libraries become available. Thus,
obtaining high-quality training data and training the model is a rare task, if not
a one-time effort. Note that we train two different classifiers for method and
parameter classification, thereby reducing complexity, as the set of parameter
labels is category-specific, e.g., “crypto key” is not within “file access methods”.

When classifying a concrete library, Mod4Sec uses the Generic Domain
Model and takes the respective library as input. We call the resulting library-
specific model, which describes the semantics of the individual methods and pa-
rameters inside the library, a Library Model. Thus, utilizing Mod4Sec’s generic
domain model results in one model per provided library and library version,
which can seamlessly be integrated into code scanners and used with analyses.

2.2 Phase 2: Generate Security Analyses

In the second phase, Mod4Sec uses the library models to automatically generate
static and dynamic code analyses for previously defined security policies. The
key idea is to encode security properties in a language that can be mapped to
specific functionalities in a particular analysis framework such as Soot [8], and
to properties of the library models generated in phase 1 of Mod4Sec.

Our proposed description language SecPLang is declarative, i.e., it defines
which properties should be checked. How properties are evaluated is up to the
specific analysis framework. SecPLang contains basic logic operations, and a
small set of predefined functions and predicates, e.g., has(x) to check whether
a collection x contains items, and values(y) resp. valued(y) to statically resp.
dynamically retrieve all values of parameter y of a program statement. We further



4 Maria Kober and Steven Arzt

Table 1. Categorization results on three security categories.

Category Precision Recall F1-Score # Samples

Cryptography 0.92 0.93 0.93 320
Authentication 0.83 0.78 0.81 161
Network/TLS 0.81 0.81 0.81 303
Other 0.99 0.99 0.99 10,412

define one auto-generated placeholder for each method parameter label of the
library models, e.g., p-key references parameters labeled as cryptographic keys.

For example, the policy “crypto keys must not be hard-coded” can be en-
coded as encryption[not has (values (p-key))] for static analyses. During
the analysis, all API calls that are of type encryption according to the li-
brary models of phase 1 are collected. The placeholders in the Boolean formula
are replaced with the respective statement parameters. If the declaration of
the API method is, e.g., encrypt(input, key, algorithm), and it is called
as encrypt(a, b, c) in the code under analysis, the placeholder p-key in the
Boolean formula of the security property is replaced with b because the second
argument is the cryptographic key according to the library model. Evaluating the
Boolean formula only requires invoking the correct building blocks of the analysis
framework. In the example, a value analysis is invoked on variable b, modeled as
predefined values-function in the formula. The predefined has-function checks
whether values returned at least one value, i.e., there is a hard-coded key.

3 Experiments and Preliminary Results

To evaluate the feasibility of our approach, we implemented a prototype for the
first phase of Mod4Sec as described in Section 2.1. From the Maven central
repository, we obtained cryptography, network, and authentication libraries. We
hand-annotated 784 security-relevant methods in the Java Standard Library and
in 11 relevant third-party libraries (altogether 3x cryptography, 5x network, 6x
authentication), omitting method parameter annotation. We extracted JavaDoc
and signatures for 11,196 methods with JavaParser. For supervised machine
learning, we transformed input data to bags-of-words and used scikit-learn [12]
with one fully connected neural network having one hidden layer with 16 nodes.

Table 1 presents the results of a stratified ten-fold cross-validation on our data
set. The precision of Mod4Sec is between 0.81 and 0.99 for different categories.
The recall is between 0.78 and 0.99, with an f1-score between 0.81 and 0.99. In
total, more than three-quarters of all methods are categorized correctly and we
are able to correctly identify a high number of security-relevant methods, even
when those are a minority in the analyzed code.

To assess whether finer-grained categories are beneficial, we divided the
cryptography category into several subcategories as shown in Table 21. All
subcategories have a precision between 0.74 and 1.0, and a recall between 0.71

1 Due to space limitations, we only include the most relevant subcategories. Hash and
MAC APIs, for example, have fewer methods in our sample set.



Towards Automatically Generating Security Analyses from Library Models 5

Table 2. Results for five subcategories of cryptography APIs.

Category Precision Recall F1-Score # Samples

Cipher-Configuration 0.74 0.90 0.81 61
Crypt. Randomness 1.00 0.88 0.93 8
En- & Decryption 0.75 0.71 0.73 21
Key Creation 0.89 0.86 0.88 125
Signatures 0.84 0.72 0.78 29

and 0.9. These numbers indicate that it is possible to correctly distinguish indi-
vidual cryptographic functionalities in libraries, making an essential part of the
first phase of Mod4Sec applicable for software analysis.

Note that a simple keyword-search is not sufficient for our purpose. For exam-
ple, the keyword “key” is present, amongst others, in the context of cryptographic
keys, but also in key-value pairs in maps and object builders. When searching
through our dataset for “key”, we found 903 methods, which is almost thrice
as much as there are cryptographic methods of interest and about six times the
number of methods related to cryptographic keys, encryption, or decryption.

4 Related Work

Checking applications for specific misuses of security-sensitive APIs is common
practice [13, 16, 3, 15]. CogniCrypt [6, 7] further assists developers with auto-
matic code generation for using such APIs. FixDroid [11] evaluates code snip-
pets against a database of known insecure code. PQL [10] allows for declarative
queries on code the analyst is familiar with. All of these approaches rely on man-
ually assembled patterns for APIs. In contrast, we propose a general approach
for automatically generating analysis rules, based on a library-agnostic semantic
domain model. SWANASSIST [14] could be integrated in step 1 of Mod4Sec. It
utilizes developer feedback to actively learn security-relevant methods.

5 Conclusion and Future Work

In this paper, we have presented our vision of Mod4Sec for automatically gen-
erating static and dynamic code analyses from generic security properties de-
scribed in our newly introduced API-agnostic language SecPLang. Mod4Sec
uses machine learning for automatically generating library models, which then
allow it to map generic security properties to concrete APIs. We presented first
experimental results to demonstrate the feasibility of the first phase of our vision.

As future work, we will provide a full implementation and evaluation of our
vision, including automatic classification for method parameters using machine
learning. We plan to re-evaluate our preliminary results on a larger dataset and
aim to increase Mod4Sec’s precision and recall. Furthermore, we will extend
Mod4Sec with additional categories of methods. We plan to formally describe
SecPLang and extend its scope to more complex security properties. We plan
to build an implementation of the analysis generator for static and dynamic
analyses on top of the Soot program analysis framework [8].



6 Maria Kober and Steven Arzt

References

1. Chatzikonstantinou, A., Ntantogian, C., Karopoulos, G., Xenakis, C.: Evaluation
of Cryptography Usage in Android Applications. In: Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications Tech-
nologies (formerly BIONETICS). pp. 83–90 (2016). https://doi.org/10.4108/eai.3-
12-2015.2262471

2. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An Empirical Study of
Cryptographic Misuse in Android Applications. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. pp. 73–84 (2013).
https://doi.org/10.1145/2508859.2516693

3. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: An analysis of android ssl (in) security. In:
Proceedings of the 2012 ACM conference on Computer and communications secu-
rity. pp. 50–61 (2012). https://doi.org/10.1145/2382196.2382205

4. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Security testing: A survey. In: Advances in Computers, vol. 101, pp. 1–51. Elsevier
(2016). https://doi.org/10.1016/bs.adcom.2015.11.003

5. Ihara, A., Fujibayashi, D., Suwa, H., Kula, R.G., Matsumoto, K.: Understand-
ing when to adopt a library: A case study on ASF projects. In: IFIP Interna-
tional Conference on Open Source Systems. pp. 128–138. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57735-7 13

6. Krüger, S., Nadi, S., Reif, M., Ali, K., Mezini, M., Bodden, E., Göpfert, F.,
Günther, F., Weinert, C., Demmler, D., et al.: Cognicrypt: Supporting develop-
ers in using cryptography. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 931–936. IEEE (2017)

7. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: Crysl: validating correct
usage of cryptographic apis. arXiv preprint arXiv:1710.00564 (2017)

8. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011) (Oktober 2011)

9. Maqsood, H.M., Bondavalli, A.: Agility of Security Practices and Agile Process
Models: An Evaluation of Cost for Incorporating Security in Agile Process Models.
In: ENASE 2020. pp. 331–338 (2020). https://doi.org/10.5220/0009356403310338

10. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using pql: a program query language. Acm Sigplan Notices 40(10), 365–383 (2005)

11. Nguyen, D.C., Wermke, D., Acar, Y., Backes, M., Weir, C., Fahl, S.: A stitch in
time: Supporting android developers in writingsecure code. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
1065–1077 (2017). https://doi.org/10.1145/3133956.3133977

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

13. Piccolboni, L., Di Guglielmo, G., Carloni, L.P., Sethumadhavan, S.: Crylogger:
Detecting crypto misuses dynamically. arXiv preprint arXiv:2007.01061 (2020)

14. Piskachev, G., Do, L.N.Q., Johnson, O., Bodden, E.: Swan assist: Semi-automated
detection of code-specific, security-relevant methods. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). pp. 1094–
1097. IEEE (2019). https://doi.org/10.1109/ASE.2019.00110



Towards Automatically Generating Security Analyses from Library Models 7

15. Saccente, N., Dehlinger, J., Deng, L., Chakraborty, S., Xiong, Y.: Project achilles:
A prototype tool for static method-level vulnerability detection of java source code
using a recurrent neural network. In: 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshop (ASEW). pp. 114–121. IEEE
(2019). https://doi.org/10.1109/ASEW.2019.00040

16. Shuai, S., Guowei, D., Tao, G., Tianchang, Y., Chenjie, S.: Modelling analysis and
auto-detection of cryptographic misuse in android applications. In: 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing. pp.
75–80. IEEE (2014). https://doi.org/10.1109/DASC.2014.22

17. Suwa, H., Ihara, A., Kula, R.G., Fujibayashi, D., Matsumoto, K.: An Analysis
of Library Rollbacks: A Case Study of Java Libraries. In: 2017 24th Asia-Pacific
Software Engineering Conference Workshops (APSECW). pp. 63–70. IEEE (2017).
https://doi.org/10.1109/APSECW.2017.25


