
Concept for automated usability evaluation
of graphical user interfaces

Karen Insa Wolf ∗ Rashik Thalappully ∗ Stefan Goetze ∗

Frank Wallhoff ∗,∗∗

∗ Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg,
Germany (email: insa.wolf@idmt.fraunhofer.de)

∗∗ Jade University of Applied Sciences, Institute for Technical Assistive
Systems, Oldenburg, Germany

Abstract: In this paper, the concept of a tool CogUA (Cognitive Usability Analysis) for
automated usability evaluation of the Graphical User Interfaces (GUI) is presented. Results
based on a first prototype implementation are discussed. The tool is designed to support the
development of GUIs for an intuitive and safe operation of special-purpose machines. It aims
at the prediction of usability before launching new user interfaces. The automated analysis can
help to correct design errors at an early stage, which reduces the risk of software modifications
during the final development phase. The tool is based on approaches from different areas of
computer science: computer vision, data mining and cognitive modeling. Selected aspects of
human capabilities can be mapped based on a cognitive model to simulate and analyze human
behaviors. The modules of CogUA are based on computer vision and data mining for automated
recognition of GUI elements and the identification of use cases respectively. The conceptual link
of other modules of CogUA to the cognitive model is elaborated.

Keywords: automated usability analysis, user interaction simulation, cognitive modeling,
ACT-R, computer vision

1. MOTIVATION

The manual control of modern machines for complex pro-
duction processes is performed with software based user
interfaces, exclusively or additionally to hardware buttons.
The quality of the user interfaces contributes to an efficient
and safe production process, cf. e.g. Flaspöler et al. (2009).
However, the design concepts of user interfaces for special-
purpose machines often do not explicitly consider optimal
user interaction.

Industrial partners gave feedback that the focus of devel-
opment lies on hardware, the software is often second-tier.
The operational concept of GUIs follows in many cases the
idea to present all possible functions of the machine and
not to organize the workflow of the operator in the best
possible manner.

The typical phases in the development of a special
purpose-machine are shown in Fig. 1. Test runs of the
machine carried out by an experienced machine operator
reveal deficiencies of the user interface often too late at
phase 3 or 4. Software modifications in the final devel-
opment phases are typically avoided because it is time-
consuming or risky to modify the software. This makes
the development of easy to use and consistent software
more difficult. But incorrect entries due to a poorly de-
signed user interface can harm workpieces, machine or
even workers. Therefore, the motivation is to develop a
tool that allows automated usability evaluations of user
interface concepts and prototypes at an early stage of the
development.

2. CONCEPT

The use of a cognitive model to simulate user interactions
linked to a user interface is at least in research a common
practice, e.g. in gaming scenarios (Smart et al., 2016)
or driving a car scenarios (Kujala and Salvucci, 2015).
A motivation for applying a cognitive model in usability
analysis is given in Ritter et al. (2001) and West and
Emond (2002). Summarizing, a usability analysis based
on a virtual user can supplement a standard usability
evaluation. Advantageous is the full control of the setting
(background of the subjects, the number of subjects,

Fig. 1. Typical development phases of a special-purpose
machine.

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

motivation validity, exclusion of an experimental bias
e.g. by comments of the experimenter), disadvantageous
are the technical limitations of the cognitive model albeit
it is already complex and time-consuming to implement.

In the next section, a short overview of existing approaches
of automated usability analysis with a link to a cognitive
model is given, followed by the description of main features
of the tool CogUA, which is under development. The
section closes with the specification of its modules.

2.1 State of the art

Cognitive models aim at simulating processes of the human
brain. Relevant processes for the mentioned application
are perception (vision), motor functions (moving a hand,
fingers) and decision making using pieces of knowledge
stored in memory. There are different known realizations
of a cognitive model, as EPIC (Executive Process Inter-
active Control, Kieras and Meyer (1997)), SOAR (States,
Operators And Reasoning, Laird et al. (1987)) and ACT-R
(Adaptive Control of Thought - Rational, Anderson et al.
(2004)).

Different approaches of automated usability analysis in the
past 15 years also have a similar motivation as sketched
above, e.g. Misker et al. (2001); Ritter et al. (2001, 2002);
John et al. (2004); Heinath and Urbas (2007); Halbrügge
(2013); Quade et al. (2014); Russwinkel and Prezenski
(2014). Especially, the integration of a cognitive model
into usability analysis should be simplified to allow a
practical application in daily work of a software developer
of user interfaces. A framework of templates of common
user interactions (like mouse click, keyboard stroke) linked
to the cognitive model ACT-R is proposed in Salvucci
and Lee (2003). A similar idea is realized in Heinath and
Urbas (2007). The purpose is that the person who sets up
the usability test does not require detailed knowledge of a
cognitive model.

The CogTool (John et al., 2004) therefore provides a
graphical user interface with the help of which a user can
set up a visualization of the specific user interface he/she
wants to analyze. Alternatively, Hyper Text Markup Lan-
guage (HTML) code can be imported as the description
of the user interface. Based on this visualization of the
user interface a specific task consisting of different user
interactions (mouse click, keyboard strokes) can be defined
interactively with the CogTool GUI. Finally, the user runs
the analysis based on the cognitive model. The outcome
is a protocol of the predicted interactions including time
stamps. The duration of interaction is a key criterion in
the usability evaluation, cf. ISO 9241-210. The approach
of Misker et al. (2001) goes one step further by avoiding
the re-implementation of the user interface. On a Microsoft
Windows system Misker et al. (2001) take the information
about the user interface of an application from the window
handlers. This information is transferred to the cognitive
model. Actions, like a keyboard stroke, are returned from
the cognitive model to the application. In this way, the
cognitive model is directly linked to the user interface of
the original application. The approach is evaluated for
specifically defined use cases consisting of a sequence of
interaction steps.

2.2 Main features of CogUA

The question arises why such virtual usability tests, as
described above, are not common practice in the industry?
The expectation is that the workload to define such a test
is still too high. Therefore, we conceptually propose a tool
- implemented already in parts - to automate as much of
the process as possible.

The approaches cited above, especially the one of Misker
et al. (2001) and CogTool, John et al. (2004), provide a
good basis, as no or only litte knowledge of a cognitive
model is required. But in the case of CogTool, it is
still necessary to re-implement the user interface (except
for web pages coded in HTML). In both approaches,
each specific use case must be defined step by step to
set up the test scenario. This definition of the use case
requires manual work by analyzing the user interface in
detail, e.g. by applying the Hierarchical Task Analysis,
cf. Heinath and Urbas (2007).

CogUA aims at the reduction of the effort of defining the
use cases manually. The idea in CogUA is to monitor user
interactions and to derive interaction traces. These traces
can then be analyzed to identify use cases. Additionally,
the approach of Misker et al. (2001) is extended by
automated analysis of the graphics of the user interface.
Thereby, the information of the GUI elements is not
limited by the restricted content of the window handler.

The recording of user interaction traces is applicable if
an implementation of the user interface already exists,
either (a) as prototype or (b) as running application, which
should be modernized. In case of (a) the steps of a use case
can be defined by executing them on the prototype user
interface. A manual pre-analysis of the workflow or expert
knowledge is here necessary in order to select appropriate
use cases. In case of (b) the idea is that use cases are
derived based on interaction traces recorded during the use
of the software in practical work. The identified use cases
are the basis to define the final use cases for the cognitive
model. Additionally, the use cases can already be helpful
for the design of a new version of the user interface with
a better mapping of the workflow. Former workarounds,
detected in the traces, can be designed as standard process.

The elements of the user interface are detected by au-
tomated recognition based on computer vision. As by-
product the graphics of the user interface can be analyzed
regarding ergonomic criteria like contrast or font size.

The tool CogUA comprises four major steps:

Step 1: Analysis of the graphical user interface based on
ergonomic criteria, e.g. contrast, font size,

Step 2: Recording of user interaction traces and identifi-
cation of use cases,

Step 3: Simulation of possible interactions to check for
consistency,

Step 4: Determination of interaction times for specific
tasks based on cognitive models.

Concerning the identification of use cases, it is expected
that this can not be fully automated. An expert of the
specific application has to interpret the results of the
automated analysis e.g. to filter out the relevant use cases.

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

Fig. 2. A schematic diagram of CogUA linked to the architecture of ACT-R, cf. Anderson et al. (2004). The information
which is transferred from the CogUA modules to ACT-R is depicted in the dashed boxes.

But the automated analysis should speed up the definition
of the use cases compared to complete manual preparation.

2.3 Modules of CogUA

A schematic diagram of CogUA is shown in Fig. 2. Three
modules are proposed as link to ACT-R:

Automated recognition: Based on screen shots of the
user interface graphical elements such as buttons and
text are automatically recognized. Hence, a little or no
predefined knowledge of the software to be tested needs
to be known. Other approaches require task models,
source code or a representation of the user interface
in HTML, e.g. Mahajan and Shneiderman (1997); John
et al. (2004); Heinath and Urbas (2007); Quade et al.
(2014). Technical details how the recognition is realized
are described in Section 3.

Trace Recorder: Based on an event tracker user inter-
actions (keyboard stroke, mouse clicks) are monitored
and stored as a graph, cf. Section 4.

Analysis of Use Cases: Based on the trace graph use
cases of user interactions are identified. A first approach
is defined but not yet tested extensively. The concept is
described in Section 5.

The cognitive model based on ACT-R is initialized con-
sidering the outcomes of these modules. The transferred
information is depicted in the dashed boxes in Fig. 2. The
recognized elements of the user interface can be trans-
ferred as visual objects detected by the visual module.
The detailed traces are necessary to transfer knowledge
about the interaction tasks into the declarative module.
In the declarative memory, chunks are defined as pieces
of memory. Results of the use case analysis can help to
simplify the definition of goals within the goal buffer. The
realization of this link is ongoing work.

3. AUTOMATED RECOGNITION

The basic objective of the automated recognition of a GUI
obtained from the screen shots is to transform pixel-level
input to objects and symbols, which a cognitive model can

interpret. The responsibility of the automated recognition
is to recognize the text embedded in the user interface and
to detect the location of GUI elements such as buttons,
drop down boxes etc. Existing algorithms of optical charac-
ter recognition (OCR) are applied to minimize the amount
of a priori information. Other approaches, e.g. Halbrügge
(2013), require predefined templates of GUI elements.

3.1 Approach

The algorithm used to determine the embedded text and
GUI elements is illustrated in Fig. 3. Initially, the acquired
screen shot of the GUI is converted from RGB color space
into gray scale Y according to Equation 1 as described in
Gonzalez (2009).

Y = 0.229R + 0.587G + 0.114B. (1)

Generally, binarization is performed on gray-scale images
that are embedded with information. During the step,
a threshold is chosen that separates the foreground and
background information. In adaptive thresholding, the
threshold value is determined based on the intensity values
in the neighborhood. In order to identify GUI elements, the
adaptive thresholded image is subjected to morphological
operations (Gonzalez, 2009). Erosion and dilation are
applied sequentially to determine horizontal patterns in
the image. A similar operation is performed to determine
vertical patterns in the image. Hence, the morphological
operations generate two images, one with the vertical
and horizontal structures in the image and the other
with the text regions as shown in Fig. 3. Connected
component analysis (Gonzalez, 2009) are performed on
both of these images to obtain bounding boxes around
the GUI elements and text regions. These image patches
are passed on to the Tesseract-OCR (Smith, 2007) for
text recognition. Tesseract-OCR returns the recognized
text and a corresponding confidence score. The regions
with a score less than an empirically determined threshold
are neglected. The automated recognition is implemented
using OpenCV python (Bradski, 2000).

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

Fig. 3. The process steps of the automated recognition of
text and GUI elements from the screen shot are shown
on the left hand side. Results obtained after applying
each step on a dummy user interface are shown on the
right hand side.

3.2 Results

A sample result from the graphical analysis is listed
in Table 1. The result is based on the dummy user

1

2

3

4

Fig. 4. Dummy user interface of height 507 pixels and
width 879 pixels for which a sample of the results
of the graphical analysis are tabulated in Table 1.
For easy mapping, the respective ID is marked in red
adjacent to recognized text or the GUI element.

Tab. 1. A sample of the results of the graphical
analysis based on the dummy user interface

shown in Fig. 4.

ID Contrast Font Size Position Recognized
(pt) (x, y) Text

1 0.87 9 (91, 122) Exit
2 0.74 13 (271, 247) AB
3 0.35 9 (91, 288) Storage
4 0.87 17 (590, 417) Flush

. . .

interface, depicted in Fig. 4. The following properties of the
recognized GUI elements and detected text are calculated:

Contrast: Contrast c of the image region is calculated
by taking the difference between the gray scale intensity
of the foreground Yf and of the background Yb of the
image region. The obtained value is divided by 255 to
get a normalized value, yielding

c = |Yf − Yb|/255. (2)

A high contrast value close to 1.0 is obtained if there is
a large difference between the gray scale intensity of the
foreground and background regions and vice versa. The
contrast values in Table 1 range from 0.35 with a low
contrast for the label ”Storage”, written in gray color,
up to 0.87 for the labels ”Exit” and ”Flush”, written in
black color.

Position: The location of detected text or the GUI ele-
ment is expressed as (x, y) using pixel indices. The top
left corner of the image is considered as the origin, y
value increases downward, while x increases to the right.
The top left coordinate of the detected text or the GUI
element is tabulated in Table 1.

Font size: The font size is expressed in terms of point
(pt). The size of recognized text is obtained in number
of pixels from the Tesseract-OCR based on the height
of the bounding box of the text. This height value is
transformed into pt considering the resolution of the
specific display (94 px/inch). The derived font size is
an approximation, which can be too small, if certain
letters, as ”g” with lower descender or ”h” with a higher

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

Fig. 5. Interaction trace for the use case to compute
”1+2” with the Microsoft Windows calculator. On the
right hand side the principle structure of the graph
encoded in dot format is shown. As parameter font
size, position, etc. can be stored.

ascender, are not included in the text label. A correction
factor is planned to consider this.

Recognized text: The text recognized by the Tesseract-
OCR is listed in Table 1. This information will be
combined with the results of subsequent trace recorder
steps to generate relevant and meaningful traces.

Contrast, text size and numbers of buttons can already
give first hints in the evaluation of the usability based
on ergonomic criteria as described e.g. in Mahajan and
Shneiderman (1997). Also, consistency checks can be done
based on the position and text information, e.g. that a but-
ton labeled with ”Exit” remains at the same position on
different ”screens” of the user interface. Current problems
in the automated text recognition depend on the contrast,
resolution and the font type. Some letters are difficult to
distinguish, like ”i” and ”l”, or upper and lower case of
letters are confused, e.g. ”StOP” in Fig. 3. Special training
of the text recognition predefining the text font can help
to improve.

4. TRACE RECORDER

The trace recorder logs all the user interaction events such
as mouse clicks and keyboard strokes happening on the
graphical user interface. These monitored events along
with information from the automated recognition step are
combined and encoded as a graph. Graphviz (Ellson et al.,
2001) library is used to display this graph of a sequence of
monitored events encoded into dot format.

An example of such a graph is shown in Fig. 5. This graph
was generated using the calculator application of Microsoft
Windows, shown in Fig. 6. The task was to compute ”1
+ 2”, as it could be seen looking at the content of the
labels in the transition elements 0 -> 1, 1 -> 2 and 2
-> 3 ("Left click on ..."). The last transition 3 -> 4
represents the left click on the equality sign which was not
recognized in the text recognition process. Therefore, the
coordinates of the click are mentioned in the label descrip-
tion. Sequences of such graphs are the input information
for the use case analysis, described in the following section.

Fig. 6. Sample application: the Microsoft Windows calcu-
lator.

Fig. 7. Identification of a use case based on the user
interaction traces.

5. USE CASE ANALYSIS

Besides the application of a cognitive model, the identi-
fication of use cases is a main feature of CogUA. The
idea is that based on the trace information, described in
Section 4, repetitive user tasks, called use cases, can be
filtered out. This is sketched as a simplified example in
Fig. 7. A pattern of interactions steps {3, 2, 4, 3}, specified
with integer numbers, has to be identified in the traces.
For the example based on the Microsoft Windows cal-
culator, shown in Fig. 5, the interaction sequence reads
{0, 1, 2, 3, 4}, neglecting the specific action ”left click” as
it is the same for all elements. The algorithm, which is
used to identify these patterns, is described in the following
section. The testing of the algorithm based on real user in-
teraction traces is ongoing work, therefore no experimental
results can be shown yet. Instead, relevant aspects for the
application of the algorithm in the context of CogUA are
discussed in Section 5.2.

5.1 Approach

A prototype implementation of the algorithm of sequential
pattern mining is based on the work of Stroulia et al.
(1999); El-Ramly et al. (2002a,b). The motivation for the
original approach is reverse engineering of software tools
as basis for the efficient migration of the software tool to

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

Fig. 8. Examples of two sequences s1 and s2 of trace
elements. The use case - highlighted in dark grey -
consisting of elements {3, 2, 4, 3} is recognized consid-
ering a maximum error εmax = 1 by the sequential
pattern mining algorithm.

new platforms or to optimize the GUI. By monitoring user
interactions, a task model is derived. The task model can
be used ”as basis for specifying a new GUI tailored for the
task in question” (Stroulia et al., 1999).

Based on the example given in El-Ramly et al. (2002b)
the algorithm of sequential pattern mining is shortly ex-
plained. An interaction trace is summarized as an or-
dered sequence of ID numbers, e.g. a sequence s1 =
{1, 3, 2, 3, 4, 3} and s2 = {2, 3, 2, 4, 1, 3}. The task is to
identify a repetitive pattern in these sequences, as sketched
in Fig. 8. The selection of a matching part, called episode
e, in the sequences depends on specified criteria:

minimum length `min: The pattern should have at
least the specified minimum length.

minimum support σmin: The minimum support de-
fines the minimum number of occurrences of the pattern
within the sequences.

maximum error εmax: The maximum error defines the
maximum number of not matching insertions within
the episode, where the pattern matches a part of the
sequence. For example, the pattern {1, 2, 3} matches the
episode {1, 2, 4, 3} of a sequence with a maximum error
of 1.

minimum score Smin: El-Ramly et al. (2002b) defines a
score

S = log2(|p|) log2(nσ(p))D(p). (3)

Therein, p is the pattern with the length of |p|. The
number nσ is the number of occurrences of the pattern
within the sequences, the support. The density D is
defined as

D(p) =
|p|nσ∑nσ

i=1 |ei|
(4)

using the length |e| of an episode e including eventually
insertion errors.

Starting with all possible patterns of length 2 which can
be build based on the set {1, 2, 3, 4} a list of matching

episodes can be derived considering the mentioned criteria
(especially the minimum error). To avoid an exhaustive
search of all possible patterns of all lengths the next longer
patterns are generated based on those patterns, which
fulfill the criteria, named above. The idea is that a longer
pattern cannot meet the constraints unless its sub patterns
meet them.

Assuming `min = 2, σmin = 2, εmax = 1, the longest
pattern which can be found in the two sequences s1 and
s2 is p = {3, 2, 4, 3}. It gets a score of S = 1.6 which
is higher than the scores of shorter patterns fulfilling the
criteria ({2, 3, 4}, {1, 3},{3, 3}).
El-Ramly et al. (2002b) suggested that possible irrele-
vant noise can be neglected by using the run-length en-
coding algorithm, which replaces immediate repetitions
with a count followed by the item being repeated. The
sequence {1, 2, 3, 3, 3, 3, 2, 4, 4} is for example then encoded
as {1, 2, (4)3, 2, (2)4}. This procedure increases the chance
to identify a larger number of patterns.

5.2 Aspects for the application within CogUA

The testing of the algorithm based on real user interaction
traces is ongoing work. The approach has to be evaluated
for the targeted application. The analysis of the interaction
traces should provide primarily a basis for the composition
of use cases, which will be deployed by the usability
analysis based on the cognitive model. This aims at
reducing the work effort applying a cognitive model for
automated usability analysis, cf. Section 2.2.

Beyond this, the identified use cases can help to design
future user interface concepts with much better workflow
orientation. An additional but even more challenging goal
is to identify inconsistencies in the workflow. That means
that a specific task can be solved via the user interface
following different interaction traces. This is sketched in
Fig. 9 as workflow of the initialization of a fictitious
process. If it is confirmed, that a parameter set A is ok,
then the check of a second parameter set B pops up. This
check is missing - in this simple, theoretic example - if the
parameter set A had to be reconfigured.

In the industrial context, the software is often developed
incrementally over the years and this increases the risk
of generating such inconsistencies. Due to growing func-
tional features of a system new modules have to be inte-
grated into the user interface without changing the basic
interaction concept. The analysis of the recorded traces
can contribute to give hints for such inconsistencies by
comparing traces of similar use cases. This simple check
does not at all raise the claim of a complete proof of
consistency. Such a proof requires complex analysis based
on formal verification techniques as used in safety-critical
application, cf. Wortelen et al. (2014). The identification
of multiple interaction traces for the same task based on
the simple comparison of traces can also help to find out
the most efficient trace as best workflow.

However, the analysis of the interaction traces is a de-
manding task in the context of the targeted application
area. In the case of machine operation, it is mostly not
obvious what is the final goal of the user. The operator
typically starts the interaction only if there is a problem,

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

Fig. 9. A simple workflow of a fictitious process, where
an inconsistency occurs in the traces. If parameter
set A is reconfigured no check of parameter set B is
initiated.

otherwise the machine runs in an automated process. The
interaction intention contains therefore a phase of analyz-
ing the problem (e.g. looking for sensor data) followed by a
phase of solving the problem (e.g. correcting parameters).
Therefore, test runs on real applications are essential as
next step in the development of CogUA.

6. CONCLUSIONS AND OUTLOOK

Summarizing, the concept and first results of a tool for
automated evaluation of graphical user interfaces are de-
scribed. The development and testing of the tool is ongoing
work. The application area is the operation of special-
purpose machines, leading to specific challenges in order
to build up a practice-oriented tool.

The next step will be extensive test runs on different user
interfaces to evaluate in detail the first prototype imple-
mentation of the automated recognition, trace recorder
and, especially the analysis of use cases. Subsequently, the
link to the cognitive model has to be realized and tested.
Comparisons between human users and the simulation are
planned.

In perspective, the tool can help to improve the devel-
opment of consistent and efficient user interfaces. This
reduces the risk of software modifications during the fi-
nal development phase. The application of the tool as a
regular quality check within the development process can
reinforce the link to existing design guidelines in practice.
Even though the production systems become step by step
completely automated, the user interface plays a critical
role as long as humans have the ultimate control of the
machines.

REFERENCES

John R Anderson, Daniel Bothell, Michael D Byrne, Scott
Douglass, Christian Lebiere, and Yulin Qin. An
integrated theory of the mind. Psychological review,
111(4):1036–1060, 2004.

Gary Bradski. The OpenCV library. Doctor Dobbs
Journal, 25(11):120–126, 2000.

Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson.
Mining system-user interaction traces for use case
models. In Proc of 10th International Workshop on

Program Comprehension, 2002, pages 21–29. IEEE,
2002a.

Mohammad El-Ramly, Eleni Stroulia, and Paul Soren-
son. Recovering software requirements from system-
user interaction traces. In Proceedings of the 14th
international conference on Software engineering and
knowledge engineering, pages 447–454. ACM, 2002b.

John Ellson, Emden Gansner, Lefteris Koutsofios,
Stephen C North, and Gordon Woodhull. Graphviz-
open source graph drawing tools. In Graph Drawing,
pages 483–484. Springer, 2001.

Eva Flaspöler et al. The human-machine interface as an
emerging risk. Technical report, European Agency for
Safety and Health at Work, 2009.

Rafael C Gonzalez. Digital image processing. Pearson
Education India, 2009.

Marc Halbrügge. ACT-CV: Bridging the gap between
cognitive models and the outer world. In E. Bran-
denburg, L. Doria, A. Gross, T. Günzlera, and
H. Smieszek, editors, Grundlagen und Anwendun-
gen der Mensch-Maschine-Interaktion - 10. Berliner
Werkstatt Mensch-Maschine-Systeme, pages 205–210.
Universitätsverlag der TU Berlin, 2013.

Marcus Heinath and Leon Urbas. Simplifying the devel-
opment of cognitive models using pattern-based mod-
eling. In 10th IFAC/IFIP/IFORS/IEA Symposium
Analysis, Design, and Evaluation of Human-Machine
Systems. Seoul, Korea., pages 130–135, 2007.

Bonnie E John, Konstantine Prevas, Dario D Salvucci,
and Ken Koedinger. Predictive human performance
modeling made easy. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 455–462. ACM, 2004.

David E Kieras and David E Meyer. An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
computer interaction, 12(4):391–438, 1997.

Tuomo Kujala and Dario D Salvucci. Modeling visual sam-
pling on in-car displays: The challenge of predicting
safety-critical lapses of control. International Journal
of Human-Computer Studies, 79:66–78, 2015.

John E Laird, Allen Newell, and Paul S Rosenbloom. Soar:
An architecture for general intelligence. Artificial
intelligence, 33(1):1–64, 1987.

Rohit Mahajan and Ben Shneiderman. Visual and textual
consistency checking tools for graphical user inter-
faces. IEEE Transactions on software engineering,
23(11):722–735, 1997.

Jan Misker, Niels A Taatgen, and Jans Aasman. Validating
a tool for simulating user interaction. In Proceedings
of the Fourth International Conference on Cognitive
Modeling, pages 163–168, 2001.

Michael Quade, Marc Halbrügge, Klaus-Peter Engel-
brecht, Sahin Albayrak, and Sebastian Möller. Pre-
dicting task execution times by deriving enhanced
cognitive models from user interface development
models. In Proc EICS 2014, pages 139–148, 2014.

Frank E Ritter, Gorden D Baxter, Gary Jones, and
Richard M Young. User interface evaluation: How
cognitive models can help. Human-computer interac-
tion in the new millennium, pages 125–147, 2001.

Frank E Ritter, Dirk Van Rooy, and Robert St Amant.
A user modeling design tool based on a cognitive

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

architecture for comparing interfaces. In Computer-
Aided Design of User Interfaces III, pages 111–118.
Springer, 2002.

Nele Russwinkel and Sabine Prezenski. ACT-R meets
usability. In Proc 6th International Conference on
Advanced Cognitive Technologies and Applications
COGNITIVE, 2014. Venice, Italy: IARIA, 2014.

Dario D Salvucci and Frank J Lee. Simple cognitive
modeling in a complex cognitive architecture. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 265–272. ACM,
2003.

Paul R Smart, Tom Scutt, Katia Sycara, and Nigel Shad-
bolt. Integrating ACT-R cognitive models with the
unity game engine. Integrating Cognitive Architec-
tures into Virtual Character Design. IGI Global, Her-
shey, Pennsylvania, USA, 2016.

Ray Smith. An overview of the Tesseract OCR engine. In
icdar, pages 629–633. IEEE, 2007.

Eleni Stroulia, Mohammad El-Ramly, Lanyan Kong,
P Sorenson, and Bruce Matichuk. Reverse engineering
legacy interfaces: An interaction-driven approach. In
Proc of 6th Working Conference on Reverse Engineer-
ing, 1999, pages 292–302. IEEE, 1999.

Robert L West and Bruno Emond. Can cognitive mod-
eling improve rapid prototyping. Carleton University
Cognitive Science Technical Report, 5, 2002.

Bertram Wortelen, Andreas Lüdtke, Denis Javaux, and
Sonja Sievi. Experiences from using formal verifi-
cation techniques to analyze human-machine inter-
action: A case study. In Proceedings of European
Conference on Cognitive Ergonomics 2014, 2014.

5. Interdisziplinärer Workshop: Kognitive Systeme
14.-16.3.2016, Bochum

