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POTENTIAL OF MANIPULATING THE DAMPING PROPERTIES OF PARAL-
LEL KINEMATIC MACHINE TOOLS

Parallel kinematics with a higher end-effector @egof freedom such as hexapods and pentapods tcofisis
large number of joints and slender struts. Howeités,only possible to create comparably low levei bearing
and strut bending stiffness at reasonable expensealthe limited construction space. That meaas ttiese
structures are very susceptible to vibration. BEwethe low-frequency range they have a large nurobeglevant
eigenmodes that are only dampened slightly. Simattasly, it is difficult to analyze vibrational grerties due
to coupled eigenmodes, which also makes it diffibuldiscover ways to remedy this situation. Thigcke will
take the example of a pentapod to analyze the dignproperties of slightly dampened parallel kineicaby
simulation to study potential means of manipulaiing his will include a description of the modekrfation of
the mechanical system. The article will also adslreays of reducing model size and using variousulsition
environments to boost analysis efficiency. Finallgth passive and active strategies will be studied evalu-
ated for boosting damping. Amongst others it ccagdshown that it is not necessary to damp evethefive
kinematic chains to achieve effective improvemdrthe system damping behaviour.

1. INTRODUCTION

Pentapod and hexapod structures consist of 5 oredriatic chains linked to one another.
These chains are generally formed of one strutctimeesponding number of joints and an
feed drive. It is necessary to set up the jointa wrery tight space and design struts as slim
as possible to generate the best kinematic preseatid high axis dynamics. The joints are
best formed of pretensible combinations of rolleafings that only dampen slightly. These
design constraints mean that the joints are mushrigid than the guide systems for serial
machine structures, and the struts only have sfigitrral strength. This results in higher
vibration susceptibility with simultaneously limidesystem damping. At the same time, its
vibration properties are substantially more comex therefore more difficult to capture
due to the coupled kinematic chains, the large rarmolb discrete elasticity points and the
greater position dependencies of properties.
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Fig. 1: Working platform of the pentapod machinel tgeft) and the systematics of PKM structures(fight) with the
number of DOF of each kinematic chain (marked fipkehtapod)

This article will take the example of a machinel twdh a pentapod structure (Fig. 1) to
demonstrate an option for simulating vibration gndigs of parallel kinematics (PKM) for
discovering where they can be manipulated for redudominant resonance ratios. Its sys-
tem properties are described based upon the gfetments method (FEM) and subsequent
tests will be carried out in the MATLAB/SIMULINK g$tware environment because it sig-
nificantly minimizes calculating times and can i controlled drives. The first part of
this article will apply the tools of vibration cauanalysis, model size reduction and imple-
menting physical models in the SIMULINK environmemt the pentapod. It will then study
the influence of damping variation of specific ssgx@mblies on vibration properties on the
frequency response function (FRF). The last palitdiscuss how to trandfer this potential
for improvement into real life.

2. MODELING

2.1. GENERAL WORKFLOW

Machine tools are conventionally analyzed with mboldy analysis (MBA) or FEM.
There are drawbacks to MBA in mapping the elastmperties of complex mechanical
structures and higher-order vibration modes, alghoi is effective in terms of computing
times, simulating travel movements and becausariticclude drives and control systems.
Although vibration properties of complex mechanicamponents can be mapped much
better with FEM than MBA, it still has the drawbagkhigh computing time intensity with
dynamic analyses. In other words, extensive analygéh a large number of parameters
variations could take an extremely long periodimiet Beyond this, it is hardly possible to
include major travel movements and controlled driié major travel movements are not
necessary, then this can be a good combinatioheobénefits of FEM and MBA, particu-



larly with the state space (SS) representation usedntrol engineering. SS representation
Is a mathematical model of a physical system ast afsinput, output and state variables
related by first-order differential equations arah de used in SIMULINK. The SS repre-
sentation used in this article is

X = Ax+Bu

y=Cx+Du (1)
system (matrix)

input (matrix)

output (matrix)

direct transmission (matrix)

input (scalar)

state of the system (column vector)

XcCcgoOw>»

The theoretical interactions are described in i ¢he following items allow a rough de-
scription of how to create the SS model of the aeod:

1. generating coupled equations of motion and intt@hditions in the FEM envi-
ronment

2. calculating eigenvalues and eigenvectors in the EBMronment

3. model size reduction

4. generating the SS matricAsB, C and D

The following will address the FEM model and mosiek reduction in greater detail.

2.2. EIGENVALUE PROBLEM AND CAUSES OF VIBRATION

The pentapod model is created and modal paramatersimulated with FEM. This pa-
rametric model consists of 150,000 nodes while ggmiag 800,000 degrees of node free-
dom (DOF) (Fig. 2). Since it is not necessary tude damping to create the SS model, the
only thing that has to be applied is the rigidityfdamass matrix including their respective
constraints with special consideration of the maghposition where the eigenvalue problem
has to be solved for each machine position of @sterThe first 500 eigenvalues occur in a
frequency range of as much as 750 Hz and Fig. &v@lkcan be used to assess the distribu-
tion of the eigenmodes via frequency. Manipulatihg vibration properties necessitates
identifying the subassemblies that cause the eigguéncies. It is hardly possible to analy-
sis the causes of the PKM types by simply obsertlmegFEM vibration form plots or an-
imations because rigid body movements and elagtforchations generally overlap with
PKM. Or, to put it differently: PKM vibrations caeikinematic movements in the working
platform (WP) particularly in the low-frequency g In turn, this often generates rotating
rigid body movements in the struts and WP, althotngly should not be deemed the cause
of the vibration. The kinematic proportion of th#nation may be greater than the actual



cause of the vibration, which makes it substantiaibre difficult to identify the causes of
the vibration while easily leading to incorrectargretations.

A method has been applied according to Neubero[4} ieast approximately identify the
causes of the vibration. This method can be usealssess the lowest eigenfrequency of
multiple-mass oscillators, although it also delss@pproximate statements on the impact
specific elasticities have on the level of eigegfrencies. This method was applied by ne-
glecting all elasticities during an FEM modal asayensuring that only the elasticity to be
studied (such as the joints or struts) stays elasti

Model of the kinematics Model of the overall machine tool

(DOF-1 on working
platform)

@ Labeling of kinematic chains

Fig. 2: FEM model and labeling the kinematic chaifithe machine tool analyzed

The analysis found that it is possible to assessntipact that the frame, struts and joints on
the WP and basis platform (BP) had on specificrdigguencies (also see Fig. 6 above). It
is not only the first frame vibration, but also thest bending eigenforms of the struts that
are responsible for the lowest eigenfrequenciegendfirds, the joint elasticities on the BP
caused the axial vibrations on the struts wherea®tare other bending modes on the struts
and local frame vibrations in the higher-frequerayge.

2.3. MODEL SIZE REDUCTION

The degree of freedom of the FEM model and the b modes should be reduced
before creating the SS model. Fig. 3 shows onetevalp this. First of all, FEM is used to
carry out a modal analysis of the undamped systeralculate the eigenvalue vector
(Block Lanczos is a FEM solver suited to modelshed size). The next two steps are select-
ing the nodes pertinent to downstream analyseshendppropriate DOF while creating the
normalized modal matrix, for them. Incidentally, the SS model can be ctatording to
[5] based upon the eigenfrequency veetoand normalized modal matri, although this
will not be described in greater detail here.



Finite Element Analysis Nodes: 150.000
-Eigenvalue problem DOF: 800.000
-Block Lanczos Modes: 500

¥

Selection of relevant nodes| | TCP, Drive mechanics|
-Inputs Centres of Joints; etc.
-Outputs Nodes: 26

¥
Selection of relevant DOFs| | TCP: x, y, z; Centres of

-Inputs Joints: x,j v, | z; etc.
-Outputs DOFs: 38
)
Selection of relevant modeg | Error limit: 0,35 %
- dc gain Modes: 98
v
Modal State Space Form x= Ax+Bu
-Equations of Motion y =Cx+ Du

Fig. 3: Model size reduction flowchart according2band application

The model size can be substantially reduced agaimy eigenmodes are applied that are
significant to the DOF selected. A case in poinb@al frame vibrations, a lot of which do
not have any impact on the tool center point (T@R3trut vibrations. Calculating the static
reinforcementdc gain can produce a systematic analysis of theyaalse of specific eigen-
modesi = 1 ..m for the DOF selected for the machine [2]. The gaeh®rmula for equally
modally dampened systemg € z = const.[%] of critical damping) and an undamped sys-
tem is:

y4 m z.Z

_j: nji “nki 2
. 2)
Z] — m ani ani (3)

Fo s +2z,M5+ nf
Fy is the force applied at DOFandz is the displacement taken at DOF

This formula indicates that in general each tranifaction consists of the total of the
systems of one degree of freedom. Each systemtesndi@ed by each input/output eigen-
Vectorz,, Zy and the eigenvalue,. If we substitutes = jw= jO0 = 0, we get the frequency
response at dc, the dc gain for fi@ eigenmode. This is the same for the dampened and
undamped case:

nji “nki :dC,jk (4)



It can be proven for resonancy that the ratiosl@fain to be calculated according to the
formula above also apply to equally modally dampesgstems, although this will not be
described in greater detail here. The gredi) is, the greater is the impact of tH&ei-
genvalue. Ifdc(i) is small enough, its eigenmode can be neglectddoamtted from the
modal matrix.

—e—TCP yy

dc value

4] 50 100 150 200 250 300 350 400 450 500
Mode number

Fig. 4: Dc value of each mode for input/output TYgP

Figure 4 shows an example @¢ gain for input (TCP y) and output (TCP y) and 98h=z
altogether 500 modes are included at a relevamoi 6f 510°. The percentage error
resulting in comparison to the original model franmode reduction ai#/= 0 can be
calculated with

-G

dc, (W=0) = GT A00% (5)

The error in including 98 modes is approximately29o for TCP yy. However, mode eval-

uation viadc gain is no longer correct if each eigenmode isassply dampened, and the

gain at the point of resonancy has to be usedadstEhe subsequent basic simulations will
forego adjusting the damping properties for measerdgs while assuming a constant value
z; =z = 0.1% of critical damping for all eigenmodes. hthe SS model is created based
upon the mode reduction and damping described,hwlimuld mean that the images below
do not reflect the eigenvectors of the actual maelimodal damping for the actual machine
is 2—12 times larger if the eigenmode is dominant).



3. VIBRATIONAL PROPERTIES OF THE MACHINE TOOL

Fig. 5 and 6 show the simulated FRF of the origswnario of the pentapod on the as-
sumed TCP for two machine positions in the freqyelange bin 400 Hertz (ISO units are
used in the absence of other specifications).Fajso has the distribution of the eigenmode
numbers to point out once again to the importarfce@de reduction. In addition, Fig. 6
also shows the relevant causes of the vibratios.pidsition and directional dependencies of
the machine properties can be easily seen in fiiesges and the directional dependency is
particularly strong at the P2 edge position. Furtiee, the first frame eigenmode can also
be seen at 27 Hz in the x-direction and the sedmmlinant frame eigenmode at 67 Hz in
the vertical direction. Both modes are essenticdiysed by the installation conditions of the
machine, although in reality they are substantialyre dampened. Other eigenmodes typi-
cal for PKM are caused by the bending vibrationghef struts and the elasticities of the
joints, particularly the BP joints. These are tiigeemodes that are also dominant on the
actual machine. What is interesting here is thetfet the bending eigenmodes are actually
pertinent to the WP, although the “reaction forcesthe struts do not exert a force in the
feed direction with bending vibrations. In otherrd® they can only impact the WP posi-
tion indirectly.
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Fig. 5: FRF at TCP and position P1
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Fig. 6: FRF at TCP and position P2

4. LOCAL VELOCITY FEEDBACK DAMPING

The sensitive analyses below calculate the imphetsa discrete increase in damping for
specific subassemblies has on the system propentigee TCP primarily focusing on the
necessary damping locations. The discrete dampenmnadeled with a damping forég or
damping moment, that is viscous or proportional to speed:

(6)

Studies are made in the first step regardless efthvan the damping values selected can ac-
tually be brought about with practical solutiondieTsecond step places the knowledge
gained alongside specific options for technicallyiding them, although the latter will not
be the subject matter of this paper.



4.1. BENDING VIBRATIONS OF THE STRUTS

As noted above, the bending vibrations of the igenform of the struts cause the do-
minant resonance ratios in the lower frequency @aigenerally two first bending eigen-
forms occur per strut due to the design of thet gbints that are vertical to one another and
differ by 5-20 Hz from one another. The rotatiomsh® strut nodes can be used in the first
approximation both for detecting strut vibrationsdaconducting damping forces. Fig. 7
uses the rotations of the two nodes on the endkeo§truts while the first bending eigen-
form can be detected or rigid body modes can lexieg by forming the difference. Other
nodes have to be taken into consideration to fglialap the second bending eigenmodes.
Frequency-dependent filters can be used to sepamatalyze different modes. However,
since the second bending eigenmodes are only afrdulate relevance on the actual ma-
chine and the model, model formation will not bea&ed in greater detail here.

/ y1 CD

In1

i o duft Velocity ) ’ > P

/y,2 Derivative b (damping) Unary Minus
In2

X X = Ax+Bu
y =Cx+Du

Fig. 7: Modeling of viscous damping for the firgrfaling mode of a strut

Boosting the damping of the bending eigenmodescesiihe resonance ratios in the
lower frequency range. What is peculiar here isfdut that this dampens the first frame
eigenmode. The resonance ratios disappear almogiletely if all struts are dampenedbat
= 20,000 Ns/m and the strut vibrations have a nrab$ impact on system properties even
if b is very great and cannot be achieved with matdaatping. Fig. 8 shows the effect that
great strut damping has on the FRF on the TCP sifipp P2. It became apparent during
tests that that each of the struts has a varietkdeayf relevance for the vibration properties
of the TCP. Greater damping on struts 1 and 2r(tef€ig. 2 for the designation) has a sig-
nificant impact regardless of the machine posiaod direction of excitation under study.
The reason for this is the fact that the two WRtgwints are closer to the TCP. It can be
seen in Fig. 8 that great damping for the two stimufposition P2 has virtually the same im-
pact on the FRF as damping all struts. The extattthe struts contribute to overall damp-
ing increase is never below 70% at other machirsgipas.



FRF TCP x: Simulation,
Position: x=0, y=-200, z=500
Modal damping: 0,1 %
b=20.000 Ns/m

Magnitude

Frequency [Hz]

Fig. 8: Viscous damping of strut bending modes (XCPosition P2)

4.2. AXIAL VIBRATIONS OF THE STRUTS CAUSED BY JOINS OF THE BASIS PLATFORM

The elasticity of the cardan joints (configurednfroadial needle roller bearings) on the
base platform causes rigid body modes for thessiruthe axial direction (feed direction)
that cause significant resonance ratios on the iiGRe range between 70 Hz and 110 Hz.
Boosting the damping in the cardan joints can éffely reduce the resonance ratios. The
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Fig. 9: Viscous damping of axial strut modes (TGPosition P2)



additional damping is modeled by including a danmpetiveen the strut and outside cardan
ring fastened to the machine frame. Struts 1 ardh made dominant contribution to
overall axial damping in an analogous fashion todogg vibrations. The high level of rele-
vance of the two struts is also mostly independémachine position and direction of exci-
tation. Fig. 9 shows the theoretical impact thackte damping of axial vibrations bf=
50,000 Ns/m has on the FRF TCP x, position P2.

4.3. VIBRATIONS OF THE WORKING PLATFORM

Damping forces on the TCP were conducted into tbkivg platform to study what im-
pact an increase in damping would have in the afé¢lae process point. In this case, damp-
ing does not have a relative impact between thehmacsubassemblies, but an absolute im-
pact in the global coordinate system. This typdarhping could be brought about by proof
mass actuators (PMA) such as [3][8][6]. They alswéhthe benefit of reaching a broad-
band impact regardless of the subassemblies cati@ngbration. Fig. 10 shows the impact
of added viscous damping b= 20,000 Ns/m on the FRF on the TCP x, position P2

FRF TCP x: Simulation,

no additional damping
Position: x:Q, y=-200, z=500 = = = damped TCP x
Modal damping: 0,1 %
b=20.000 Ns/m

Magnitude (abs)

Frequency [Hz]

Fig. 10: Viscous damping of TCP vibrations relatigea global normal (TCP x, Position P2)

4.4. DEFINING AN ACTIVE DAMPER

The degrees of damping presented in chapters 431.ednnot be brought about with a
passive design (material damping or damping injdhes) or only with a great deal of time
and expenditure. In contrast, added active systamgleliver the needed degrees of damp-
ing. One benefit of the MATLAB/SIMULINK simulatioenvironment used is the fact that
it can trace the technical requirements made oéadddative systems without a great deal of
time effort.
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Fig. 11: Principle and model of an idealized prowfss actuator for viscous damping

Fig. 11 shows the principle and a simplified siniola structure for a proof mass actua-
tor (PMA). Newton’s Second Axiom states that thevacmass of the PMA has to be accel-
erated proportional to the vibrational speed ofdtracture to be dampened to generate vis-
cous damping force. That means that it is posshalculate the reaction mass and stroke
needed for a specified degree of damping. EHMANNd€rives these interrelations for a
selected eigenfrequency by analytical means whde 22 shows the necessary amplitudes
of damper force and mass path to generate theussdamping shown in Fig. 10 for two
ideal PMA including an harmonic excitation of thechine on the TCP x afl0 N. This
simulation environment makes it possible to calkeuthe interrelation between the desired

FRF TCP x: Simulation, i +8,5N
Position: x=0, y=-200, z=500 +7 N

Modal damping: 0,1 % *

Proof mass actuators: i

m =5 kg, g =4.000 1/s

m =1 kg, g =20.000 1/s

:

FPMA

! m =5kg, g =4.000 /s
+2,3 mmg ! ‘=== m=1Kkg, g=20.0001/s

XPMA mass

. . 0,2 mm
+0,46 mm" % +0,04 mm

Frequency [Hz]

Fig. 12: Necessary damping force amplitudes ammket of PMA mass for generating the viscous dampioger-
ties shown in Fig. 10



damper force and needed stroke for the entire &egyirange. For instance, a reaction mass
of 5 kg was selected in Fig. 12 for the first damjpegenerate the required gain of 4,000 1/s
and maximum stroke af0.46 mm. The second damper configuration has diogamass of

1 kg, maximum stroke af2.3 mm and a gain of 20,000 1/s. Finally, the irspulesponse
function of the PMA is shown analogously in Fig. WBere it can be seen that an actual
damping system requires much more complex contitbl fiters since very low-frequency
vibrations theoretically add up to very high ampdes for the PMA mass.

m =5 kg, g =4.000 1/s

FPMA

Amplitude
=)
x
5

IMPULSE: TCP x: Simulation,
Position: x=0, y=-200, z=500
Modal damping: 0,1 %

XpMA mass
o

1

0.005 Time

Fig. 13: Step response function of an proof masgpea for generating the viscous damping propestiesvn in
Fig. 10

5. CONCLUSIONS

First of all, this article took the example of aaghme tool with a pentapod structure to
simulate and analyze the vibration properties oélbel kinematics. It identified the subas-
semblies causing the vibration properties and agensitive analyses to study the impact
of added discrete dampers. This bore out the thbaisthe low flexural strength of the
struts and low joint elasticities were the mairnsgafor the most dominant resonance ratios.
Secondly, this article showed that not all kinemahains are equally important to the TCP
vibration properties. The simulation environmenédis- a combination of the finite ele-
ments method and MATLAB/SIMULINK — proved to be elently suited to this study in
connection with extensive model size reduction. fifieimum simulation periods achieved
allow a whole series of parameter variations wbigng excellent for streamlining work.
Both complex mechanical structures and controli@ged can be included here. That means
that mechatronic systems can be easily simulatételf do not have to make great move-



ments. A simple example was used to demonstraseptimciple of deducing the require-
ments made of a proof mass actuator for generaisgpus damping forces. Admittedly,
there is still a lot of work to be done to corrgathap the actual damping properties of ma-
chine tools. However, to show basic effects orilg, tnodel was not mapped to experimen-
tal examined modal damping. In any event, the medilhave to be adapted to have a
guantitative description of damping properties.
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