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POTENTIAL OF MANIPULATING THE DAMPING PROPERTIES OF  PARAL-
LEL KINEMATIC MACHINE TOOLS 

Parallel kinematics with a higher end-effector degree of freedom such as hexapods and pentapods consist of a 
large number of joints and slender struts. However, it is only possible to create comparably low levels of bearing 
and strut bending stiffness at reasonable expense due to the limited construction space. That means that these 
structures are very susceptible to vibration. Even in the low-frequency range they have a large number of relevant 
eigenmodes that are only dampened slightly. Simultaneously, it is difficult to analyze vibrational properties due 
to coupled eigenmodes, which also makes it difficult to discover ways to remedy this situation. This article will 
take the example of a pentapod to analyze the dynamic properties of slightly dampened parallel kinematics by 
simulation to study potential means of manipulating it. This will include a description of the model formation of 
the mechanical system. The article will also address ways of reducing model size and using various simulation 
environments to boost analysis efficiency. Finally, both passive and active strategies will be studied and evalu-
ated for boosting damping. Amongst others it could be shown that it is not necessary to damp every of the five 
kinematic chains to achieve effective improvement of the system damping behaviour. 

1. INTRODUCTION 

Pentapod and hexapod structures consist of 5 or 6 kinematic chains linked to one another. 
These chains are generally formed of one strut, the corresponding number of joints and an 
feed drive. It is necessary to set up the joints in a very tight space and design struts as slim 
as possible to generate the best kinematic properties and high axis dynamics. The joints are 
best formed of pretensible combinations of roller bearings that only dampen slightly. These 
design constraints mean that the joints are much less rigid than the guide systems for serial 
machine structures, and the struts only have slight flexural strength. This results in higher 
vibration susceptibility with simultaneously limited system damping. At the same time, its 
vibration properties are substantially more complex and therefore more difficult to capture 
due to the coupled kinematic chains, the large number of discrete elasticity points and the 
greater position dependencies of properties.  
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Fig. 1: Working platform of the pentapod machine tool (left) and the systematics of PKM structures [7] (right) with the 

number of DOF of each kinematic chain (marked field: pentapod) 
 
This article will take the example of a machine tool with a pentapod structure (Fig. 1) to 

demonstrate an option for simulating vibration properties of parallel kinematics (PKM) for 
discovering where they can be manipulated for reducing dominant resonance ratios. Its sys-
tem properties are described based upon the finite elements method (FEM) and subsequent 
tests will be carried out in the MATLAB/SIMULINK software environment because it sig-
nificantly minimizes calculating times and can include controlled drives. The first part of 
this article will apply the tools of vibration cause analysis, model size reduction and imple-
menting physical models in the SIMULINK environment on the pentapod. It will then study 
the influence of damping variation of specific subassemblies on vibration properties on the 
frequency response function (FRF). The last part will discuss how to trandfer this potential 
for improvement into real life.  

2. MODELING 

2.1. GENERAL WORKFLOW 

Machine tools are conventionally analyzed with multibody analysis (MBA) or FEM. 
There are drawbacks to MBA in mapping the elastic properties of complex mechanical 
structures and higher-order vibration modes, although it is effective in terms of computing 
times, simulating travel movements and because it can include drives and control systems. 
Although vibration properties of complex mechanical components can be mapped much 
better with FEM than MBA, it still has the drawback of high computing time intensity with 
dynamic analyses. In other words, extensive analyses with a large number of parameters 
variations could take an extremely long period of time. Beyond this, it is hardly possible to 
include major travel movements and controlled drives. If major travel movements are not 
necessary, then this can be a good combination of the benefits of FEM and MBA, particu-



larly with the state space (SS) representation used in control engineering. SS representation 
is a mathematical model of a physical system as a set of input, output and state variables 
related by first-order differential equations and can be used in SIMULINK. The SS repre-
sentation used in this article is 
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A system (matrix) 
B input (matrix) 
C output (matrix) 
D direct transmission (matrix) 
u input (scalar) 
x state of the system (column vector) 
 

The theoretical interactions are described in [5] and the following items allow a rough de-
scription of how to create the SS model of the pentapod: 

 
1. generating coupled equations of motion and initial conditions in the FEM envi-

ronment 
2. calculating eigenvalues and eigenvectors in the FEM environment 
3. model size reduction 
4. generating the SS matrices A, B, C and D 

 
The following will address the FEM model and model size reduction in greater detail. 

2.2. EIGENVALUE PROBLEM AND CAUSES OF VIBRATION 

The pentapod model is created and modal parameters are simulated with FEM. This pa-
rametric model consists of 150,000 nodes while possessing 800,000 degrees of node free-
dom (DOF) (Fig. 2). Since it is not necessary to include damping to create the SS model, the 
only thing that has to be applied is the rigidity and mass matrix including their respective 
constraints with special consideration of the machine position where the eigenvalue problem 
has to be solved for each machine position of interest. The first 500 eigenvalues occur in a 
frequency range of as much as 750 Hz and Fig. 5 (above) can be used to assess the distribu-
tion of the eigenmodes via frequency. Manipulating the vibration properties necessitates 
identifying the subassemblies that cause the eigenfrequencies. It is hardly possible to analy-
sis the causes of the PKM types by simply observing the FEM vibration form plots or an-
imations because rigid body movements and elastic deformations generally overlap with 
PKM. Or, to put it differently: PKM vibrations cause kinematic movements in the working 
platform (WP) particularly in the low-frequency range. In turn, this often generates rotating 
rigid body movements in the struts and WP, although they should not be deemed the cause 
of the vibration. The kinematic proportion of the vibration may be greater than the actual 



cause of the vibration, which makes it substantially more difficult to identify the causes of 
the vibration while easily leading to incorrect interpretations.  

A method has been applied according to Neuber [4] to at least approximately identify the 
causes of the vibration. This method can be used to assess the lowest eigenfrequency of 
multiple-mass oscillators, although it also delivers approximate statements on the impact 
specific elasticities have on the level of eigenfrequencies. This method was applied by ne-
glecting all elasticities during an FEM modal analysis ensuring that only the elasticity to be 
studied (such as the joints or struts) stays elastic.  
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Fig. 2: FEM model and labeling the kinematic chains of the machine tool analyzed 

 
The analysis found that it is possible to assess the impact that the frame, struts and joints on 
the WP and basis platform (BP) had on specific eigenfrequencies (also see Fig. 6 above). It 
is not only the first frame vibration, but also the first bending eigenforms of the struts that 
are responsible for the lowest eigenfrequencies. Afterwards, the joint elasticities on the BP 
caused the axial vibrations on the struts whereas there are other bending modes on the struts 
and local frame vibrations in the higher-frequency range. 

2.3. MODEL SIZE REDUCTION 

The degree of freedom of the FEM model and the number of modes should be reduced 
before creating the SS model. Fig. 3 shows one way to do this. First of all, FEM is used to 
carry out a modal analysis of the undamped system to calculate the eigenvalue vector w 
(Block Lanczos is a FEM solver suited to models of this size). The next two steps are select-
ing the nodes pertinent to downstream analyses and the appropriate DOF while creating the 
normalized modal matrix zn for them. Incidentally, the SS model can be created according to 
[5] based upon the eigenfrequency vector w and normalized modal matrix zn, although this 
will not be described in greater detail here. 



The model size can be substantially reduced again if only eigenmodes are applied that are 
significant to the DOF selected. A case in point is local frame vibrations, a lot of which do 
not have any impact on the tool center point (TCP) or strut vibrations. Calculating the static 
reinforcement dc gain can produce a systematic analysis of the relevance of specific eigen-
modes i = 1 .. m for the DOF selected for the machine [2]. The general formula for equally 
modally dampened systems (zi = z = const. [%] of critical damping) and an undamped sys-
tem is: 
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Fk is the force applied at DOF k and zj is the displacement taken at DOF j. 
 
This formula indicates that in general each transfer function consists of the total of the 

systems of one degree of freedom. Each system is determined by each input/output eigen-
vector znji, znki and the eigenvalue wi. If we substitute s = jw = j0 = 0, we get the frequency 
response at dc, the dc gain for the i ten eigenmode. This is the same for the dampened and 
undamped case: 
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Fig. 3: Model size reduction flowchart according to [2] and application 



It can be proven for resonancy that the ratios of dc gain to be calculated according to the 
formula above also apply to equally modally dampened systems, although this will not be 
described in greater detail here. The greater dc(i) is, the greater is the impact of the i th ei-
genvalue. If dc(i) is small enough, its eigenmode can be neglected and omitted from the 
modal matrix. 

Figure 4 shows an example of dc gain for input (TCP y) and output (TCP y) and 98 of the 
altogether 500 modes are included at a relevance limit of 5�10-8. The percentage error 
resulting in comparison to the original model from mode reduction at W = 0 can be 
calculated with 
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The error in including 98 modes is approximately 0.32% for TCP yy. However, mode eval-
uation via dc gain is no longer correct if each eigenmode is separately dampened, and the 
gain at the point of resonancy has to be used instead. The subsequent basic simulations will 
forego adjusting the damping properties for measurements while assuming a constant value 
zi = z = 0.1% of critical damping for all eigenmodes. Then, the SS model is created based 
upon the mode reduction and damping described, which would mean that the images below 
do not reflect the eigenvectors of the actual machine (modal damping for the actual machine 
is 2–12 times larger if the eigenmode is dominant). 
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Fig. 4: Dc value of each mode for input/output TCP yy 



3. VIBRATIONAL PROPERTIES OF THE MACHINE TOOL 

Fig. 5 and 6 show the simulated FRF of the original scenario of the pentapod on the as-
sumed TCP for two machine positions in the frequency range bin 400 Hertz (ISO units are 
used in the absence of other specifications). Fig. 5 also has the distribution of the eigenmode 
numbers to point out once again to the importance of mode reduction. In addition, Fig. 6 
also shows the relevant causes of the vibration. The position and directional dependencies of 
the machine properties can be easily seen in these pictures and the directional dependency is 
particularly strong at the P2 edge position. Furthermore, the first frame eigenmode can also 
be seen at 27 Hz in the x-direction and the second dominant frame eigenmode at 67 Hz in 
the vertical direction. Both modes are essentially caused by the installation conditions of the 
machine, although in reality they are substantially more dampened. Other eigenmodes typi-
cal for PKM are caused by the bending vibrations of the struts and the elasticities of the 
joints, particularly the BP joints. These are the eigenmodes that are also dominant on the 
actual machine. What is interesting here is the fact that the bending eigenmodes are actually 
pertinent to the WP, although the “reaction forces” of the struts do not exert a force in the 
feed direction with bending vibrations. In other words, they can only impact the WP posi-
tion indirectly. 

FRF  TCP: Simulation, Modal damping: 0,1 %,
Position P1: x=0, y=0, z=0 

1 12 20 60 200
Mode

number 350

Frequency [Hz]

Fig. 5: FRF at TCP and position P1 



4. LOCAL VELOCITY FEEDBACK DAMPING 

The sensitive analyses below calculate the impacts that a discrete increase in damping for 
specific subassemblies has on the system properties on the TCP primarily focusing on the 
necessary damping locations. The discrete dampers are modeled with a damping force Fd or 
damping moment Md that is viscous or proportional to speed: 
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Studies are made in the first step regardless of whether the damping values selected can ac-
tually be brought about with practical solutions. The second step places the knowledge 
gained alongside specific options for technically building them, although the latter will not 
be the subject matter of this paper. 
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Fig. 6: FRF at TCP and position P2 



4.1. BENDING VIBRATIONS OF THE STRUTS 

As noted above, the bending vibrations of the first eigenform of the struts cause the do-
minant resonance ratios in the lower frequency range. Generally two first bending eigen-
forms occur per strut due to the design of the strut joints that are vertical to one another and 
differ by 5-20 Hz from one another. The rotations of the strut nodes can be used in the first 
approximation both for detecting strut vibrations and conducting damping forces. Fig. 7 
uses the rotations of the two nodes on the ends of the struts while the first bending eigen-
form can be detected or rigid body modes can be rejected by forming the difference. Other 
nodes have to be taken into consideration to reliably map the second bending eigenmodes. 
Frequency-dependent filters can be used to separately analyze different modes. However, 
since the second bending eigenmodes are only of subordinate relevance on the actual ma-
chine and the model, model formation will not be described in greater detail here. 

 

 
Boosting the damping of the bending eigenmodes reduces the resonance ratios in the 

lower frequency range. What is peculiar here is the fact that this dampens the first frame 
eigenmode. The resonance ratios disappear almost completely if all struts are dampened at b 
= 20,000 Ns/m and the strut vibrations have a measurable impact on system properties even 
if b is very great and cannot be achieved with material damping. Fig. 8 shows the effect that 
great strut damping has on the FRF on the TCP x, position P2. It became apparent during 
tests that that each of the struts has a varied degree of relevance for the vibration properties 
of the TCP. Greater damping on struts 1 and 2 (refer to Fig. 2 for the designation) has a sig-
nificant impact regardless of the machine position and direction of excitation under study. 
The reason for this is the fact that the two WP strut joints are closer to the TCP. It can be 
seen in Fig. 8 that great damping for the two struts in position P2 has virtually the same im-
pact on the FRF as damping all struts. The extent that the struts contribute to overall damp-
ing increase is never below 70% at other machine positions. 
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Fig. 7: Modeling of viscous damping for the first bending mode of a strut 



4.2. AXIAL VIBRATIONS OF THE STRUTS CAUSED BY JOINTS OF THE BASIS PLATFORM 

The elasticity of the cardan joints (configured from radial needle roller bearings) on the 
base platform causes rigid body modes for the struts in the axial direction (feed direction) 
that cause significant resonance ratios on the TCP in the range between 70 Hz and 110 Hz. 
Boosting the damping in the cardan joints can effectively reduce the resonance ratios. The 

Frequency [Hz]

FRF  TCP x: Simulation, 
Position: x=0, y=-200, z=500
Modal damping: 0,1 %
b=20.000 Ns/m 

Fig. 8: Viscous damping of strut bending modes (TCP x, Position P2) 
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FRF  TCP x: Simulation, 
Position: x=0, y=-200, z=500
Modal damping: 0,1 %
b=50.000 Ns/m 

 
 Fig. 9: Viscous damping of axial strut modes (TCP x, Position P2) 



additional damping is modeled by including a damper between the strut and outside cardan 
ring fastened to the machine frame. Struts 1 and 2 have made dominant contribution to 
overall axial damping in an analogous fashion to bending vibrations. The high level of rele-
vance of the two struts is also mostly independent of machine position and direction of exci-
tation. Fig. 9 shows the theoretical impact that discrete damping of axial vibrations of b = 
50,000 Ns/m has on the FRF TCP x, position P2. 

4.3. VIBRATIONS OF THE WORKING PLATFORM 

Damping forces on the TCP were conducted into the working platform to study what im-
pact an increase in damping would have in the area of the process point. In this case, damp-
ing does not have a relative impact between the machine subassemblies, but an absolute im-
pact in the global coordinate system. This type of damping could be brought about by proof 
mass actuators (PMA) such as [3][8][6]. They also have the benefit of reaching a broad-
band impact regardless of the subassemblies causing the vibration. Fig. 10 shows the impact 
of added viscous damping of b = 20,000 Ns/m on the FRF on the TCP x, position P2. 
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Modal damping: 0,01 %
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Fig. 10: Viscous damping of TCP vibrations relative to a global normal (TCP x, Position P2) 

4.4. DEFINING AN ACTIVE DAMPER 

The degrees of damping presented in chapters 4.1.–4.3. cannot be brought about with a 
passive design (material damping or damping in the joints) or only with a great deal of time 
and expenditure. In contrast, added active systems can deliver the needed degrees of damp-
ing. One benefit of the MATLAB/SIMULINK simulation environment used is the fact that 
it can trace the technical requirements made of added active systems without a great deal of 
time effort. 



Fig. 11 shows the principle and a simplified simulation structure for a proof mass actua-
tor (PMA). Newton’s Second Axiom states that the active mass of the PMA has to be accel-
erated proportional to the vibrational speed of the structure to be dampened to generate vis-
cous damping force. That means that it is possible to calculate the reaction mass and stroke 
needed for a specified degree of damping. EHMANN [1] derives these interrelations for a 
selected eigenfrequency by analytical means while Fig. 12 shows the necessary amplitudes 
of damper force and mass path to generate the viscous damping shown in Fig. 10 for two 
ideal PMA including an harmonic excitation of the machine on the TCP x of ±10 N. This 
simulation environment makes it possible to calculate the interrelation between the desired 
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Fig. 11: Principle and model of an idealized proof mass actuator for viscous damping 
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Fig. 12: Necessary damping force amplitudes and strokes of PMA mass for generating the viscous damping proper-

ties shown in Fig. 10 



damper force and needed stroke for the entire frequency range. For instance, a reaction mass 
of 5 kg was selected in Fig. 12 for the first damper to generate the required gain of 4,000 1/s 
and maximum stroke of ±0.46 mm. The second damper configuration has a reaction mass of 
1 kg, maximum stroke of ±2.3 mm and a gain of 20,000 1/s. Finally, the impulse response 
function of the PMA is shown analogously in Fig. 13 where it can be seen that an actual 
damping system requires much more complex control with filters since very low-frequency 
vibrations theoretically add up to very high amplitudes for the PMA mass. 
 
 

5. CONCLUSIONS 

First of all, this article took the example of a machine tool with a pentapod structure to 
simulate and analyze the vibration properties of parallel kinematics. It identified the subas-
semblies causing the vibration properties and applied sensitive analyses to study the impact 
of added discrete dampers. This bore out the thesis that the low flexural strength of the 
struts and low joint elasticities were the main reason for the most dominant resonance ratios. 
Secondly, this article showed that not all kinematic chains are equally important to the TCP 
vibration properties. The simulation environment used – a combination of the finite ele-
ments method and MATLAB/SIMULINK – proved to be excellently suited to this study in 
connection with extensive model size reduction. The minimum simulation periods achieved 
allow a whole series of parameter variations while being excellent for streamlining work. 
Both complex mechanical structures and controlled drives can be included here. That means 
that mechatronic systems can be easily simulated if they do not have to make great move-
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Fig. 13: Step response function of an proof mass damper for generating the viscous damping properties shown in 

Fig. 10 



ments. A simple example was used to demonstrate this principle of deducing the require-
ments made of a proof mass actuator for generating viscous damping forces. Admittedly, 
there is still a lot of work to be done to correctly map the actual damping properties of ma-
chine tools. However, to show basic effects only, the model was not mapped to experimen-
tal examined modal damping. In any event, the model will have to be adapted to have a 
quantitative description of damping properties. 
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