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Abstract: Including information of the current road surface conditions can significantly improve the effectiveness of an AEB 
(automated emergency braking) system to avoid accidents or reduce the injury severity in rear-end crashes. A method to estimate the 
friction potential based on on-board sensor information is shown in this work. This work expands the scope of existing investigations 
on whether the accuracy needed for the warning and intervention strategies of AEB can be reached with the proposed method. First, the 
bandwidth of surface conditions investigated is extended by including low friction surfaces comparable to ice. Second, situations of 
changing surface conditions and wheel-individual surface conditions were evaluated. Finally, estimation based on different sensor sets 
was conducted with regard to series application. The investigations are based on measurements performed on a proving ground. The 
main emphasis was placed on estimation during longitudinal driving conditions. The used sensors include advanced vehicle dynamics 
measurement equipment as well as standard on-board sensors of the vehicle. 
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1. Introduction 

AEB (automated emergency braking) systems will 

soon be required for all new type approvals of vehicles 

according to EU directive 347/2012, starting with 

commercial vehicles above 3.5 tons in November 2013 

and applying for all new vehicles beginning in 

November 2015. The effectiveness of AEB to avoid 

collisions or reduce the injury severity in rear-end 

crashes has been proven in several studies [1, 2]. The 

standardization of testing procedures for AEB is 

currently in progress, but testing will have to be 

conducted only on dry roads. Also, AEB already 

introduced are developed to meet the requirements of 
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collision avoidance and mitigation on dry road 

conditions. But in contrast, collision avoidance systems 

are supposed to show more benefit on low friction 

surfaces [3]. 

AEB brake a vehicle autonomously in order to avoid 

or mitigate rear-end collisions. In case the system has 

detected a collision in the near future and the driver 

fails to react, the driver is warned about 1.5 seconds to 

2.5 seconds before the predicted collision and has the 

possibility to set an intervention. In case of no driver 

reaction, a partial braking manoeuvre is initiated that 

still allows an alternative intervention of the driver, e.g., 

a steering input for an evasive movement, while 

already decreasing potential impact energy. If the 

driver still fails to react, a full braking manoeuvre is 

initiated at about 0.6 seconds to 1.0 seconds before the 
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Fig. 2  An echo state network can learn the input output behaviour of a dynamical system. 
 

The potential of RNN depends on a stable and efficient 

method to train the RNN. So far, the size of used nets was 

limited by usage of gradient-based methods like BPTT 

(back-propagation through time) [6]. 

With ESN, only the connections to the output nodes 

are computed during training using linear regression [7, 

8]. This enables a faster and more stable training and the 

use of large nets with several thousand internal nodes. 

2.1 Data Acquisition 

Altogether, 193 measurements were evaluated that 

resulted from driving manoeuvres that were conducted 

on the proving ground Wachauring in Melk (Austria) 

with an Audi A4 Avant 1.8 TFSI. 

Two different tires were evaluated on both dry 

asphalt and a watered low friction surface with a 

friction potential similar to that of ice, see Tables 1 and 

2. In addition to pure dry and low friction conditions, 

changing road conditions (mu jump), e.g., the front axle 

enters the low friction surface before the rear axle, and 

different surface conditions on the right and left side of 

the vehicle (mu split) have been considered. Also, 

double lane change manoeuvres were conducted with 

mu split condition. The vehicle changed from a lane 

having dry asphalt to a lane having low friction surface  

Table 1  Performed driving manoeuvres and road surface 
condition. 

Driving manoeuvre 
Road surface 
condition 

Number of 
manoeuvres

Full and partial braking and 
acceleration tests, free rolling 

Dry asphalt (d) 20 

Low friction (l) 20 

mu jump (mj) 53 

mu split (ms) 60 

Steady-state circle based on 
Ref. [9] 

d 2 

l 3 

ms 2 

Double lane change based on 
VDA lane change ([10]) 

d-1-d 12 

l-d-1 15 

Handling course d 2 

Sinus tests based on Ref. [11] 
d 2 

l 2 
 

Table 2  Tire types. 

 
Number of 
manoeuvres 

Summer tire, Dimension 245/40 R18 116 
Winter tire, Dimension 205/55 R16 77 

 

and then again back to the dry lane. This manoeuvre 

was also done starting on a low friction lane, changing 

to a dry lane, and back again. 

Advanced  measurement  equipment  for  vehicle 

dynamics evaluation has been used as well as standard 

on-board sensors. For further information on the 

advanced measurement equipment, see Table 3. The 
 

Table 3  Advanced vehicle dynamics measurement equipment. 

Signal Sensor Unit Accuracy 

Spring deflections - mm ൏ േ0.5% FSO1 (625 mm) 

Braking pressure for 2 brake circuits - bar ൏ േ0.5% FSO (350 bar) 

Chassis velocities SHR m/s ൏ േ0.2% FSO (250 km/h) 

Chassis side-slip angle SHR ° ൏ േ0.1° 

Chassis Accelerations2 in COG ADMA mG ൏ 1 mG 

Chassis Rotational Velocities 2 ADMA °/s ൏ 0.00004 °/s 

                                                           
1Full Scale Output 
2Longitudinal, lateral and vertical according to Ref. [12] 
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In an additional analysis, the estimation of the 

friction potentials based on a reduced set of sensor 

information was evaluated. First results using only the 

standard on-board sensors showed a very high mean 

absolute error compared to the full sensor set. This is a 

first indication that standard on-board sensors may not 

be sufficient for the proposed application. 

Nevertheless, for a statistically tough statement with 

regard to series application, more data and data 

covering all driving states will be needed. 

4. Conclusions 

The effectiveness of current available AEB  

systems can be improved by adapting the activation 

and warning times to the current road conditions. 

In this work, it has been investigated whether the 

estimation of the global friction potential ீߤ and the 

wheel-individual friction potentials ߤோ,௜ is possible so 

that the accuracy necessary for an AEB can be reached. 

In addition to existing work, low friction conditions 

comparable to icy roads as well as mu jump and mu 

change manoeuvres were investigated. 

There are promising results, especially during 

braking manoeuvres. The accuracy of the estimates 

increases with higher dynamical excitation. However, 

there were many outliers in the data sets which cannot 

be explained yet and require further analysis. 

However, it has to be mentioned that further 

investigations are necessary before the proposed 

estimation methodology is qualified to be applied in a 

safety-critical system like an AEB. 
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