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Abstract: Including information of the current road surface conditions can significantly improve the effectiveness of an AEB
(automated emergency braking) system to avoid accidents or reduce the injury severity in rear-end crashes. A method to estimate the
friction potential based on on-board sensor information is shown in this work. This work expands the scope of existing investigations
on whether the accuracy needed for the warning and intervention strategies of AEB can be reached with the proposed method. First, the
bandwidth of surface conditions investigated is extended by including low friction surfaces comparable to ice. Second, situations of
changing surface conditions and wheel-individual surface conditions were evaluated. Finally, estimation based on different sensor sets
was conducted with regard to series application. The investigations are based on measurements performed on a proving ground. The
main emphasis was placed on estimation during longitudinal driving conditions. The used sensors include advanced vehicle dynamics
measurement equipment as well as standard on-board sensors of the vehicle.
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1. Introduction collision avoidance and mitigation on dry road
) . conditions. But in contrast, collision avoidance systems
AEB (automated emergency braking) systems will L
) . are supposed to show more benefit on low friction
soon be required for all new type approvals of vehicles
according to EU directive 347/2012, starting with

commercial vehicles above 3.5 tons in November 2013

surfaces [3].
AEB brake a vehicle autonomously in order to avoid

. ) o ) or mitigate rear-end collisions. In case the system has
and applying for all new vehicles beginning in

November 2015. The effectiveness of AEB to avoid

collisions or reduce the injury severity in rear-end

detected a collision in the near future and the driver
fails to react, the driver is warned about 1.5 seconds to

. ) 2.5 seconds before the predicted collision and has the
crashes has been proven in several studies [1, 2]. The o ] . .
L ) . possibility to set an intervention. In case of no driver
standardization of testing procedures for AEB is ] ] . o
) ) ) reaction, a partial braking manoeuvre is initiated that
currently in progress, but testing will have to be . o . .
still allows an alternative intervention of the driver, e.g.,
conducted only on dry roads. Also, AEB already ) ] ) )
. . a steering input for an evasive movement, while
introduced are developed to meet the requirements of i o
already decreasing potential impact energy. If the
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. : . . initiated at about 0.6 seconds to 1.0 seconds before the
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predicted collision until the vehicle stands still.

The rate of missed interventions of the system has to
be kept low in order to maintain a high level of driver’s
trust. False interventions have to be omitted in any case
as they can result in severe accidents. The before
mentioned activation times for warning and braking
apply for dry roads. On low friction surfaces, these
activation times have to be adjusted in order to take
advantage of the full potential of the AEB. As a
measure for the road condition, the maximum
coefficient of friction between tire and road is used. It
is further on referred to as the friction potential p.

If an estimate of the friction potential is about to be
used to adapt the activation times, a high accuracy of
the estimate is necessary in order to achieve the high
requirements to avoid missed and false interventions.
In a previous investigation [4], an acceptable accuracy
for an estimate of the friction potential for the
application in an AEB was given. Fig. 1 shows this
necessary accuracy in dependence of the real value of
the friction potential and the longitudinal velocity
when overestimating the friction potential.

The aim of the presented research is to extend
previous investigations of the feasibility to estimate the
friction potential with the method proposed in Section
2 in order to fulfil the requirements on the accuracy of
an AEB. Therefore, measurements have been conducted
on a proving ground with high and low friction surfaces.
Thus, the bandwidth of tested friction potentials was
increased compared to Ref. [4].
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Fig. 1 Relation between acceptable accuracy Au and the
real friction potentialy,.; for different initial longitudinal
speeds [4].

Mu jump manoeuvres were performed to evaluate
the detection of a change in the friction potential. In
these manoeuvres, the road conditions changes
suddenly, i.e., the front axle enters the new surface
earlier than the rear axle. Unequal distribution of
friction potentials on the four wheels also accounts for
the investigated mu split manoeuvres, where the left
side of the vehicle passes over another surface type
then the right side.

Longitudinal manoeuvres were the main emphasis of
this investigation. It is assumed that it is more difficult
to detect the friction potential in longitudinal driving
conditions due to the slower vehicle reaction compared
to lateral excitation.

Additionally, the estimation of the friction potential
using different sensor sets was investigated. First, all
available sensors including advanced vehicle dynamics
measurement equipment were used to train the Echo
State Networks. In a second step, only the information

of standard on-board sensors was used.

2. Estimation of the Friction Potential Using
Echo State Networks

The aim of this investigation is to prove the feasibility
of the estimation of the wheel-individual friction
potential during driving based on measurement data from
a given set of sensors using ESNs (echo state networks)
[5]. ESNs are a new approach to train RNN (recurrent
neural networks) which are artificial neural networks
inspired by biological neural networks like in the brain.
Other than widely used FFNNs (feed forward neural
networks) that rather behave like
mathematical functions, RNNs are dynamical systems
[6]. This
feedback loops within the network (Fig. 2). At each

time step, the previously received inputs are still

implemented

dynamical behaviour originates from

present in the network. This enables RNNs to detect
high-dimensional temporal patterns. Thus, models of
highly non-linear systems can be learned. RNNs can be
used for simulation, pattern matching, classification,

and prediction of time series.
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Fig.2 An echo state network can learn the input output behaviour of a dynamical system.

The potential of RNN depends on a stable and efficient
method to train the RNN. So far, the size of used nets was
limited by usage of gradient-based methods like BPTT
(back-propagation through time) [6]

With ESN, only the connections to the output nodes
are computed during training using linear regression [7,
8]. This enables a faster and more stable training and the
use of large nets with several thousand internal nodes.

2.1 Data Acquisition

Altogether, 193 measurements were evaluated that
resulted from driving manoeuvres that were conducted
on the proving ground Wachauring in Melk (Austria)
with an Audi A4 Avant 1.8 TFSI.

Two different tires were evaluated on both dry
asphalt and a watered low friction surface with a
friction potential similar to that of ice, see Tables 1 and
2. In addition to pure dry and low friction conditions,
changing road conditions (mu jump), e.g., the front axle
enters the low friction surface before the rear axle, and
different surface conditions on the right and left side of
the vehicle (mu split) have been considered. Also,
double lane change manoeuvres were conducted with
mu split condition. The vehicle changed from a lane
having dry asphalt to a lane having low friction surface

Table 3 Advanced vehicle dynamics measurement equipment.

Table 1 Performed driving manoeuvres and road surface
condition.

Road surface Number of
condition manoeuvres

Dry asphalt (d) 20
Low friction (1) 20
mu jump (mj) 53

Driving manoeuvre

Full and partial braking and
acceleration tests, free rolling

mu split (ms) 60

Steady-state circle based on

Ref. [9] ! 3
ms
Double lane change based on d-1-d 12
VDA lane change ([10]) 1-d-1 15
Handling course d 2
2
Sinus tests based on Ref. [11] )
Table 2 Tire types.

Number of

manoeuvres
Summer tire, Dimension 245/40 R18 116
Winter tire, Dimension 205/55 R16 77

and then again back to the dry lane. This manoeuvre
was also done starting on a low friction lane, changing
to a dry lane, and back again.

Advanced measurement equipment for vehicle
dynamics evaluation has been used as well as standard
on-board sensors. For further information on the

advanced measurement equipment, see Table 3. The

Signal Sensor Unit Accuracy

Spring deflections - mm < 40.5% FSO' (625 mm)
Braking pressure for 2 brake circuits - bar < £0.5% FSO (350 bar)
Chassis velocities SHR m/s < £0.2% FSO (250 km/h)
Chassis side-slip angle SHR ° < +0.1°

Chassis Accelerations® in COG ADMA mG <1 mG

Chassis Rotational Velocities 2 ADMA °/s < 0.00004 °/s

'Full Scale Output
’Longitudinal, lateral and vertical according to Ref. [12]
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sample frequency for all signals was 200 Hz. Other
than in previous investigations, no dynamic wheel
camber angle and no wheel velocities were measured,
compare to Ref. [4].

Concerning the standard on-board sensors, the
following signals have been recorded: wheel speeds of
all four wheels, steering wheel angle, vehicle’s
longitudinal velocity at the COG (centre of gravity),
engine’s rotational speed, engine torque, accelerator
pedal position, vehicle’s yaw rate and the environment

temperature.
2.2 Determination of Reference Value

For all combinations of mounted tires and road

surfaces, a reference value of the friction
potentials pp ; was determined using measurements
at the maximum achievable accelerations and tire
characteristics measured on a tire test bench. In
different measurements, no strong variation of the
reference value was observed. However, during hard
braking manoeuvres on the low friction surface, for a
short time higher friction values were achieved than
expected. This can be explained by dispersion of the
thin water layer between the surface and the tire in this
driving condition.

With a validated two-track vehicle model, the
dynamical vertical force F, ; acting on each tire was
calculated. The wheel-individual friction potentials
Ug, ; for each tire i were then calculated as a function
of the reference value ppor, F, ; and the tire
characteristics. In our previous investigation, the
combination of tires and road condition did not change
[4]. In this

investigation, the reference value uy.f is not always

during one measurement; see Ref.

equal to the global friction potential u; as road

conditions were object to variation during measurements.

To consider these mu jump and mu split conditions, the
relation in Eq. (1) was used to calculate the global
friction potential y, compare to Ref. [13].

1
Yiake i Fy (1)

Ug =

Fz, ges

3. Data Analysis and Results

In a first step, only measurements with summer tires
LOOCV
(leave-one-out-cross-validation). The mean absolute
global and the
wheel-individual friction potentials with the trained
ESNs can be seen in Table 4.

Figs. 3 and 4 show examples for good and bad

were evaluated using

errors for estimating  the

performance during a mu jump manoeuvre with hard
braking. Even in the bad example, the trend is correctly
predicted and the jump is detected, but the absolute
values differ. Fig. 3 also shows an effect that cannot be

fully explained yet. Predicting a future state with ESNs
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Fig. 3 Example of good estimation of u; (black line, above)
that also leads to good estimation of the friction potential
ug, ; (black dotted line) of the front left wheel (wheel fl). The

true values for p; and pp ; are plotted grey lines,

respectively.
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Fig. 4 Example of bad estimation of pu; (black line, above).
Accordingly, the estimation of pp 4 (black dotted line)
worsens. The true values for pu; and up ; are plotted grey
lines, respectively.
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is not possible, but for some measurements the jump of
the friction potentials is estimated earlier than it
occurred. A malfunction of the trigger to detect the
jumps during the measurements cannot be completely
ruled out, but is rather unlikely.

The level of dynamical excitation seems to have an
impact on the accuracy. As expected, hard braking
manoeuvres usually deliver better estimates than
moderate braking manoeuvres. The data also suggests
that better estimates can be achieved during braking than
during acceleration manoeuvres. In Figs. 5 and 6, a
moderate braking manoeuvre on mu split surfaces is
compared to a moderate acceleration manoeuvre on mu
split. It can be seen that while estimation is rather good
during moderate braking, it completely fails at data point
90 at the acceleration manoeuvre.

Nevertheless, it is difficult to make general
statements because the data sets always showed
exceptions at similar driving manoeuvres. Until now, it
is not finally understood where these discrepancies
come from. As in previous measurements, the signals
of the optical speed sensor partially failed on wet
surfaces. However, this can only partly explain some
poor performance.

In a second step, all measurement data obtained with
winter tires was investigated and finally the ESNs were
trained using all measurement data, see Table 4.

In comparison to previous work by Ref. [4], the
achieved accuracy within the different data sets for
summer tire, winter tire and all tires is lower. Partially,
this can be explained by the slow response of vehicles
to inputs in longitudinal direction. The main focus of
this investigation was put on longitudinal manoeuvres,
whereas previous analysis included more lateral
manoeuvres. Also, the difficulty of the road conditions
to be learned was greater here.

However, the tolerable accuracy (Fig. 1) has not
been reached for surface conditions of pt..f <0.5, even
for low velocities. When only considering braking
manoeuvres, the achieved mean absolute error is lower

and fulfils the requirements. Since the proposed AEB
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Fig. 5 Example of estimation of u; (black line, above) and
ug ; of the front wheels (left: dotted black line, right:
dashed black line) during a moderate braking maneuver on
musplit. The true values for pu; and pp ; are plotted grey
lines, respectively.
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Fig. 6 Example of estimation of pug; (black line, above) and

ug, jof the front wheels (left: dotted black line, right: dashed

black line) during a moderate accelerating maneuver on

musplit. The true values for u; and up ; are plotted grey

lines, respectively. At data point 90, the estimates get worse.

Table 4 The mean absolute error for ESNs trained on
different data sets.

LOOCVon LOOCV on LOOCYV on all
summer tires  winter tires tires

Apg 1 0.1692 0.1109 0.1540

Apg - 0.2199 0.1456 0.2030

Apg 3 0.1706 0.1137 0.1559

Mg, 4 0.2233 0.1492 0.2078

Apg 0.1343 0.1084 0.1342

also includes a partial braking manoeuvre before full
braking, this partial braking phase may be used to
achieve a higher accuracy on the estimate.
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In an additional analysis, the estimation of the
friction potentials based on a reduced set of sensor
information was evaluated. First results using only the
standard on-board sensors showed a very high mean
absolute error compared to the full sensor set. This is a
first indication that standard on-board sensors may not
be sufficient for the proposed application.

Nevertheless, for a statistically tough statement with
regard to series application, more data and data
covering all driving states will be needed.

4. Conclusions

available AEB

systems can be improved by adapting the activation

The effectiveness of current
and warning times to the current road conditions.

In this work, it has been investigated whether the
estimation of the global friction potential y; and the
wheel-individual friction potentials pip; is possible so
that the accuracy necessary for an AEB can be reached.
In addition to existing work, low friction conditions
comparable to icy roads as well as mu jump and mu
change manoeuvres were investigated.

There are promising results, especially during
braking manoeuvres. The accuracy of the estimates
increases with higher dynamical excitation. However,
there were many outliers in the data sets which cannot
be explained yet and require further analysis.

However, it has to be mentioned that further
investigations are necessary before the proposed
estimation methodology is qualified to be applied in a

safety-critical system like an AEB.
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