
Security Verification of Third Party Design Files in
Manufacturing

Alexander Giehl
Fraunhofer AISEC

Parkring 4
Garching b. München, Germany

0049 89 3229986 189

alexander.giehl@aisec.fraunhofer.de

Norbert Wiedermann
Fraunhofer AISEC

Parkring 4
Garching b. München, Germany

0049 89 3229986 141

norbert.wiedermann@aisec.fraunhofer.de

ABSTRACT

Customer-individual production in manufacturing is a current

trend related to the Industrie 4.0 paradigm. Creation of design

files by the customers is becoming more frequent. These design

files are typically generated outside the company boundaries and

then transferred to the organization where they are eventually

processed and scheduled for production. From a security

perspective, this introduces new attack vectors targeting

producing companies. Design files with malicious configuration

parameters can threaten the availability of the manufacturing plant

resulting in financial risks and can even cause harm to humans.

Human verification of design files is error-prone why an

automated solution is required. A graph-theoretic modeling

framework for machine tools capable of verifying the security of

product designs is proposed. This framework is used to model an

exemplary production process implemented in a wood processing

plant based on the experiences of a real-world case study.

Simulation of the modeled scenario shows the feasibility of the

framework. Apart from security verification, the approach can be

adopted to decide if a product design can be manufactured with a

given set of machine tools.

CCS Concepts

• Security and privacy➝Domain-specific security and privacy

architectures.

Keywords

Security; Manufacturing; Modeling; Graph-Based Analysis;

Production Planning; Industrie 4.0.

1. INTRODUCTION
Industrie 4.0 is the ongoing evolution of the manufacturing

landscape in Germany that is also observed in other countries. It is

characterized by the increasing integration of cyber-physical

systems into the manufacturing process. One desired effect of this

development is an increase in flexibility to address market

demands. [1] identifies, among others, the possibility for strong

incorporation of customer-individual features into the production

cycle. Before production of these customer-individual goods can

begin, the design for this product needs to be fixed. This is

required for production planning to generate an efficient

production schedule in terms of machine utilization. Offering

tools to the customer for creation of the design files is a cost-

effective way to collect customer requirements. The tools can be

made accessible, for example, via an online service or in local

subsidiaries. After the design is generated, it must be transferred

to the production planning system to schedule and start the

production.

Figure 1 provides an overview of the communication based on a

functional model of different automation layers within a plant [2].

The model itself is based on the ISA 95 standard [3] with the

corresponding numbers of the individual layers, or levels, given

on the left side of Figure 1. The third party design file arrives at

the top layer, “Business Planning & Logistics”. This layer is,

among others, responsible for the overall production planning

within the plant. From here, the design file is transferred to the

subjacent layer “Manufacturing Operations & Control”, where

detailed production planning takes place. The order for

manufacturing of individual products is dispatched from here;

manufacturing of the product takes place in the lowest layer.

Within the Industrie 4.0 paradigm, a stronger interconnection of

the different layers takes place and the boundaries between them

are starting to disappear.

Information technology (IT) security concerns itself with the

protection of computer systems by achieving protection goals [4].

Major protection goals are confidentiality, data integrity, and

availability, typically referred to as CIA. Varying definitions are

available in literature, in the context of this work the protection

goals are interpreted as follows. Confidentiality means that

information is disclosed only to authorized entities. Data Integrity

describes the accuracy and consistency of stored or transmitted

data and ensures that no manipulation or unauthorized alteration

of the data occurs. Availability is a concept also related to the

design of dependable systems [5]. It encompasses the availability

for authorized and correct service. In manufacturing, the

availability of the manufacturing environment is often seen as the

most relevant protection goal by OT operators [6]. Accepting

unverified third party design files leads to a security risk

threatening the availability of the entire production cycle as seen

in Figure 1. Trusted third party connections, e.g., to a vendor, are

a possible entry point for external attacks to industrial controls

systems (ICSs) [7]. This entry point is becoming more relevant

due to new Industrie 4.0 business models that favor stronger inter-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICCAE 2018, February 24–26, 2018, Brisbane, Australia

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6410-2/18/02…$15.00

DOI: https://doi.org/10.1145/3192975.3192984

166

connection of ICSs, also beyond company boundaries.

Manipulation of design file parameters can lead to compromised

product quality [8]. Furthermore, a manipulated design file can

lead to an overall loss of machine availability and, therefore,

production capacity [9]. Performing operations outside the

processing capability of a machine can lead to machine downtime

due to unplanned maintenance, for example, replacement of

broken machine tools or clean up procedures.

Figure 1. Layers of automation based on [2, 3].

Currently implemented production cycles are not well equipped to

identify manipulated design files. Third party or other design files

are checked by a process that incorporates a human-in-the-loop.

Human subject experimentation with engineering students on

identification of malicious design files show that humans are

prone to error [9, 10]. While some of the participants in the

conducted studies were able to identify malicious design files,

intentional manipulation of the files, i.e., a cyber-attack, was not

believed to be the cause. The authors of the studies suggest,

among others, educational awareness and enhancements in the

quality control process for mitigation. Awareness of engineering

personal concerning security is important and is further aided with

adequate tool support. Since quality control takes place after

manufacturing of the potentially defective product, which can lead

also to machine downtime, a verification step prior to production

is beneficial towards the availability of the whole production

environment.

An automated software solution to aid engineers in identifying

malicious design files is proposed. The framework needs to be

adoptable to encompass the wide variety of machine tools and

their configurations present in real-world manufacturing plants.

For this, the framework builds on well-established formal

methods. To further aid in minimizing machine downtime, a

simulation-based approach is proposed. The feasibility of

manufacturing a product can be verified before production starts

without involving real world machines. This helps in production

planning. The focus of the framework is on security-related design

file verification but can further be extended to verify if a product

can be manufactured given a set of machines and machine

configurations.

2. RELATED WORK
The exchange of product geometry as well as the verification of

the specified geometry is subject of standardization [11]. Here, the

deviation of a manufactured product from its ideal form according

to product geometry is assessed. No automated approach is

proposed, a human-in-the-loop is considered necessary in the

verification step. Further, the standards offer no support in

deciding if a certain product geometry or specification can be

harmful to a manufacturing environment.

Verification of third party design files for manufacturing is a

known problem in Additive Manufacturing (AM). AM, or 3D

Printing, is the production of parts by successively adding

material to the part until the target design is met. In contrast to this,

Subtractive Manufacturing (SM) is the production of parts by

successively removing material from the part until the target

design specification is reached. For AM, a Stereo Lithography

(STL) file is generated from the initial Computer-Aided Design

(CAD) file containing the part specification. This STL file is then

used in the further steps of AM. Existing work on identifying

malicious design files for AM focus on STL file verification. [12]

describes the possibility and effects of attacks on AM systems.

The focus is on attacks where a void is introduced in the design of

a STL file. A void is a hollow region of a part completely

enclosed by material. Introduction of voids in the part’s design

can result in reduced structural strength and, therefore, in reduced

product life of the product it is used to assemble. The authors

recommend, among others, improved software checks on STL

design files as protective measures. [13] examines the mani-

pulation of part production in AM by assessing its intrinsic

properties. Their work focuses on individual parts rather than the

assembly line and does not take damage caused to the

manufacturing environment into account.

SM processes do not include the usage of STL files. Rather, the

CAD file is converted into machine code as specified, for example,

in ISO 6983 [14]. Verification of design files for SM in the

context of security is a field of research that has not received

attention in the past and is addressed within this work.

3. CONCEPTUAL FRAMEWORK
In this section, a conceptual description of the proposed

framework for security verification of design files is presented.

The focus is on use cases for SM; however, the approach is

flexible and can be extended to encompass AM scenarios as well.

The main design goal for the framework is adaptability. This is

necessary to encompass technological progress in modern

manufacturing environments. Further, the respective domain

where manufacturing takes place needs to be considered. For

example, an assembly line of a furniture manufacturing plant uses

a different set of tooling machines as food packaging lines.

Furthermore, within the same domain, tooling machines from a

variety of vendors can be employed. These tooling machines vary

in their range of operation and the included machine tools. In

addition, a range of different products can be produced on an

assembly line given a fixed set of tooling machines.

To achieve adaptability for this wide variety of possible

applications and tooling machine configurations, a graph-theoretic

approach is proposed [15]. Graphs are a tool of discrete

mathematics used to model objects and their relations with each

other. A graph G is defined as an ordered pair

Business Planning & Logistics

Plant Production Planning, etc.

Manufacturing Operations & Control

Detailed Production Planning, etc.

Batch Control, Continuos Control,

Discrete Control

Level 4

Level 3

Level 0, 1, 2

Third Party Design File

Company Boundary

Automation Level Boundary Internal Communication

External Communication

167

G = (V, E) where V is a set of vertices and E is a set of edges. The

graph G here is the model of a manufacturing environment. A

vertice v ∈ V is a functional unit found in a manufacturing

environment. This can include machine tools executing a

subtractive process, e.g., cutting of material, or a non-subtractive

process, e.g., pick-and-place or material refinement. A functional

unit v ∈ V is not a representation of a singular machine purchased

from a tooling machine vendor. Rather, different functional units

are found in modern tooling machines. V compromises all

functional units of a manufacturing environment, thus, represents

the overall capability of the modeled manufacturing environment

G. An edge e ∈ E is a directed connection between two vertices vk

and vl denoted as e = (vk, vl); the set of all edges vn represents the

path p of a workpiece W through a manufacturing environment. A

workpiece can pass through the same set of vertices and edges

several times to undergo successive processing. Thus, G is a

cyclic, directed graph.

Figure 2 shows an example for the model of a simple

manufacturing environment. The ingoing workpiece Win arrives at

vertice v1 where it is processed. Then, it is transferred via edge e1

to v2 where further processing ensures. Similarly, it is transferred

via e2 to v3. Here, the manufacturing process can be repeated

iteratively via e3. Once the target workpiece description of a

design file is matched, the outgoing workpiece Wout leaves the

manufacturing environment.

Figure 2. Representation of a directed graph.

The conceptual descriptions in this article are illustrated by a

running example that is developed over the course of this article,

implemented, and simulated in Section 5.

Example 1. v1 can be a machine tool designated to changing the

orientation of the workpiece, v2 can perform a subtractive

operation on the workpiece, and v3 executes a pick and place task

putting the workpiece either back to v1 for turning or towards the

outgoing path. In this example, Win can be a rectangular

workpiece on which a subtractive action is performed on each

side of Win. After the subtractive actions are performed, a

workpiece Wout fitting the target description of a design file, in

this example, a rectangular part with certain dimensional

properties, is created.

The design file contains a description of the workpiece Wout to be

produced. In general, Wout can be produced with a variation of raw

materials, a different set of tooling machines, and via several

paths in the manufacturing environment. A path p is a route

through a manufacturing environment G that satisfies the

workpiece description D, i.e., generates Wout = D by traversal of G.

Each of the connected vertices v that constitute p perform an

action on the workpiece that is demanded by D. Considering the

example above, this action can be a subtractive task where

material is cut from the workpiece. This action is denoted as a

transformation tv (W) = W′ where W is changed to W′ by the

corresponding v ∈ p. The set of all actions that can be performed

on Win while traversing p is denoted Tp. A node v is capable of

performing an action; each individual action is limited by bounds

as illustrated by Example 2.

Example 2. An action describes a transformation a workpiece can

experience by traversing through a node, e.g., cutting, drilling,

gluing, placing. Bounds describe the operational limitations of an

action, e.g., the drilling tool can be placed by the machine’s

actuators within a certain area of the tooling machine for placing

drill points.

Given these definitions, it is possible to derive statements about

the capabilities of the manufacturing environment modeled by G.

First, a simple statement considering only the actions is provided:

Statement 1 (Weak Statement). The existence of a set of

vertices vp ∈ V capable of performing all actions demanded by

D and Wout is said to satisfy D and Wout.

Note that the existence of vp does not guarantee if the target

design can be manufactured within the existing manufacturing

environment, i.e., its manufacturability is undecided. This is

because also the bounds of a tooling machine must be considered.

For example, the existence of a drill alone does not guarantee that

the required drill head is present or the drill point can be placed on

the specified location of the workpiece. In order to decide if the

target design can be manufactured, the following statement, which

implicitly considers the bounds, is required:

Statement 2 (Strong Statement). The existence of a path p in

G with Tp (Win) = Wout shows the manufacturability of D on a

manufacturing environment G.

If Statement 2 is true, the target design can be manufactured

within the present manufacturing layout. By extension, this also

includes that no incidents, security-related or otherwise, occur

during manufacturing as the occurrence of an incident means a

violation of certain bounds. Statement 2 is algorithmically

computed in Section 5. For this, the following assumptions need

to be met:

Assumption 1. The manufacturing environment G contains

exactly one starting node vs. Win is always first processed by

vs.

This is necessary for computation of p. Note that Assumption 1

can always be ensured by the addition of a virtual starting node.

Assumption 2. The processing or traversal of Win in G is

fixed. The order for traversing is implicitly given by D.

It is possible that more than one path p exists in G. Therefore, the

computation can be enhanced by optimization methods.

Assumption 3. The traversal order of Assumption 2 is

reasonable.

A manufacturing environment is set up to avoid unreasonable

operations. For example, applying a refinement to the workpiece

and then performing a subtractive action removing the refined part

is unreasonable. Thus, production planning tends to reduce these

operations, as they are harmful to the overall business.

In Section 4, modeling of the workpieces Win and Wout is further

described in more detail with a comprehensive example. Notes on

the computation of a path through the graph, i.e., deciding the

manufacturability, are provided in Section 5. In that section,

Assumptions 1 - 3 are used to provide an algorithmic solution.

e3

e1 e2 Wout
v1 v2 v3

Win

168

file:///C:/Users/giehl/Documents/Pub_SecVer/paper.html%23x1-70004
file:///C:/Users/giehl/Documents/Pub_SecVer/paper.html%23x1-80005
file:///C:/Users/giehl/Documents/Pub_SecVer/paper.html%23x1-60061
file:///C:/Users/giehl/Documents/Pub_SecVer/paper.html%23x1-60083

4. CASE STUDY: FURNITURE

MANUFACTURING

In this section, a case study for the framework developed in

Section 3 is presented. The framework is applied to the domain of

furniture manufacturing. For this, a basic model of a

manufacturing environment is assumed.

Typical shop-floor setups in furniture manufacturing are

organized to provide an environment in which specific actions are

performed. Among others, these actions are cutting, drilling, and

border finishing [16]. Cutting involves the dimensional reduction

of a wooden plate. In this case study, the wooden plate is the

ingoing workpiece Win. Drilling is the process of placing a drill

point on the surface of the workpiece. Border finishing is

comprised of several individual actions. In this article, a

simplified process involving “border banding” and “border

finishing” is assumed. Border banding is the process of attaching

a border to a wooden plate; border finishing applies a finishing to

an attached border. In addition, the placing operation is added. It

changes the orientation of a workpiece according to a pre-defined

frame of reference. To summarize, the set of actions consists of

cutting, drilling, border banding, border finishing, and placing

(see Example 3).

Modeling of Win can be highly domain-specific why a reference

model of Win for furniture manufacturing is provided at this point.

However, it can be argued that some of the aspects described here

can be readily transferred to domains outside furniture

manufacturing. Tooling machines employed in furniture

manufacturing provide, inter alia, the actions described above. For

dimensional reduction, i.e., cutting, the dimensions of the

workpiece need to be included in the model. Therefore, a

dimension vector w for Win is added with w = (x, y, z) where x, y,

and z are the three-dimensional coordinates in relation to a pre-

defined coordinate system. The material of Win is encoded by a

descriptive entity M. Material descriptions need to be unique and

documented in a well-defined list of descriptors relevant to the

context of the scenario. Drilling is described by an unordered list

LD containing the coordinates of already placed drill points.

Additional drill points specified by D are assumed to be known to

the production planning system as it has information on D. Note

that a reference frame for describing the orientation of the

workpiece needs to be defined a priori. Borders are described by

another unordered list LB containing their properties, i.e., the type

of the border itself and the applied border finishing. Thus, W is a

4-tupel W = {w, M, LD, LB}.

Example 3. Figure 3 shows a model of a simplified shop floor

setup; for better readability, the edge labels are omitted. Win is

first processed by the node providing placing functionality

(denoted as vP), i.e., performs a change in orientation. From here,

W′ passes through the node designated to perform a cutting

operation (vC). Then, it is transferred to border banding (vB)

either directly or via an intermediate step through the node

performing drilling operations (vD). After border banding, border

finishing is applied (vF). Several loops can be performed through

the manufacturing environment if further operations need to be

applied to W′. In this case, it is transferred back to vP where the

described process begins anew. When no further loops are

required to meet the demands of D, the workflow is completed and

Wout is produced.

In order to provide a description of a node’s capabilities,

additional information needs to be encoded in the model. For one,

the input dimensions a node is capable of processing is required.

This is necessary to decide if a workpiece can be processed by a

node. Next, the bounds (see Section 3) of a node are encoded. For

cutting and drilling, the bounds describe the range within cuts can

be performed or drill points can be placed, respectively; for border

processing, the bounds are the types of border placements and

border finishings that can be applied. The data model of this

information for computational processing is described in Section 5.

Given the model of the manufacturing environment above,

security analysis can be conducted. It is possible to infer

statements from the model that have a malicious effect on the

availability of the production.

Example 4. Consider a scenario where a drill is specified to be

placed on a glass surface contained in Win. The glass surface can

be part of a small door often found in kitchen or living room

furniture. Thus, if the processing node assumes due to a

manipulated Win that M is a wooden surface and places a drill

point on it, the result will most likely be the destruction of Win.

Further, it will be necessary to provide unscheduled maintenance

to the processing node resulting in a loss of production capability.

Example 4 is based on and motivated by real-world incidents

experienced by project partners in IUNO (see Section 8).

Verification was conducted by a human-in-the-loop. As described

in Section 1, this is an error prone process. In Section 5, an

automated solution to this problem is given and implemented with

standard technologies.

5. EXPERIMENTAL EVALUATION
In this section, the experimental evaluation of the modeling

framework described in the previous sections is provided. First, a

reference implementation of the framework is provided in Section

5.1. Next, this implementation is used in Section 5.2 to simulate

the case study in furniture manufacturing with varying parameters.

5.1 Implementation
In this section, a reference software architecture of the

implementation is discussed.

Wout
vP vC vD

Win
vB vF

Figure 3. Model of simple manufacturing environment.

169

As descriptive file format standard Extended Markup Language

(XML) is employed [17]. This choice is due to the acceptance and

widespread use of XML in modern OT environments [18]. In the

following, X denotes a descriptive XML specification. In order to

compute the manufacturability of a design file, certain

information needs to be known a priori: descriptions of the tooling

machines’ capabilities XM, the workpiece dimensions XW derived

from Win, and the target furniture design XT derived from Wout. XM

is ideally provided by the vendor of the tooling machines while

XW and XT are best specified by the OT operator of the

manufacturing environment.

Example 5. Figure 4 shows the XML encoding of XT given the

manufacturing environment of Figure 3. The dimension vector w

is seen in Lines 4-8, the material description in Line 9, the list of

drill points LD in Lines 11-16, and the border properties

description LB in Lines 17-19.

Note that XW uses the same structure and elements while XM needs

to provide matching descriptors, e.g., drill, for the capabilities of

the tooling machine. The structure of the design files is validated

against a predefined Document Type Definition (DTD) (see Line

2 in Figure 4), which specifies grammatical rules for XML files.

The individual operations performed by a tooling machine vn ∈ V

are implemented via Extensible Stylesheet Language

Transformations (XSLTs) [19]. They are used to transform XML

files into other XML files. Furthermore, XSLT allows

modification of an XML file by adding or removing individual

XML nodes and by performing arithmetic operations. Those

properties are used to update XW while it traverses p.

Example 6. Consider an XW with dimensions w = (2000, 1500, 30)

and an XT as seen in Figure 4. When regarding only the

dimensional vector, the value of x = 2000 needs to be reduced by

10 units in order to meet the target description and, therefore,

manufacture the final product design. For this, a cutting action

needs to be performed by one of the tooling machines vn ∈ V.

It is necessary to compute this difference between the target

design XT and the current state of the design XW in order to

proceed with design file verification. This difference is denoted as

Δ≥ 0. When Δ= 0, the manufacturability of a target design on a

manufacturing environment G is given. The transformation tv (see

Section 3) is expressed by a corresponding configuration cv within

the context of computing XML files. A Δ > 0 is reduced by

applying a set of configurations C where a cn ∈ C describes an

individual configuration of a tooling machine vn.

Example 7. The corresponding configuration c is a dimensional

vector with c = (10, 0, 0). In case of other operations (e.g.,

drilling), the computed tooling machine configuration is again

represented as an unordered list. Next, a tooling machine capable

of performing a cut within the specified bounds (see Section 3)

needs to be found. Otherwise, the desired operation cannot be

performed and XT is not manufacturable on G as no path p

through G is possible.

Note that the knowledge on how to appropriately reduce Δ needs

to be encoded within the framework. It is known to the framework

that a cut reducing the dimensional vector w is beneficial towards

meeting XD as illustrated by Example 7. This knowledge is

encoded internally in the framework. For future work, an

externalized representation of knowledge, e.g., via an ontology,

can provide benefits to scalability and extension of the framework

towards further security studies [20].

The set of vertices that constitute a path p is computed by

Algorithm 1. If a valid p with Δ = 0 is found, the algorithm returns

true, otherwise false. For better readability, implementation

specific details, e.g., the use of temporary variables in Line 10 or

data structure operations for p in Line 15, are omitted. The

algorithm starts with confirming the trivial Weak Statement (see

Statement 1) in Line 2. If it is confirmed positively, the

manufacturability, i.e., the Strong Statement (see Statement 2), is

verified. For this, the input graph G is mapped by function fmap (v)

(see Line 5). It returns all nodes reachable from the input node v.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <!DOCTYPE board SYSTEM "board.dtd">

3 <board>

 <size>

5 <xdim>1990</xdim>

 <ydim>1500</ydim>

7 <zdim>30</zdim>

 </size>

9 <material type="wood"/>

 <operations>

11 <holes tool="drill">

 <hole id="ID_drill_01" diameter="5" pos_x="100" pos_y="100" pos_z="10"/>

13 <hole id="ID_drill_02" diameter="5" pos_x="150" pos_y="100" pos_z="10"/>

 <hole id="ID_drill_03" diameter="5" pos_x="100" pos_y="150" pos_z="10"/>

15 <hole id="ID_drill_04" diameter="5" pos_x="150" pos_y="150" pos_z="10"/>

 </holes>

17 <edges>

 <edge id="ID_edge_01" type="a" finish="normal"/>

19 </edges>

 </operations>

21 </board>

Figure 4. Example for target design specification XT.

170

This is possible since Assumption 2 holds. As input parameter, vs

from Assumption 1 is chosen.

Computation of Statement 2 starts with Line 6. Here, candidates

of vertices vi for inclusion in p are stored in Vi, which is initially

filled by function fmap. The computation will continue as long as

fmap returns further nodes vi for processing (see Line 18). They are

individually processed and evaluated towards their inclusion in p

starting at Line 8. Prior to this, optimization of Vi can be

performed by an optimization function fopt due to Assumption 3,

which is reasonable in more complex manufacturing layouts. In

Lines 9-11, the configuration in the form of an XSLT XSLT for a

node vi is computed by function fcon. Then, it is applied to XW by

function fapp resulting in an updated description XC. XC and XT are

then used to compute Δ. If Δ = 0, the target design can be

manufactured and the computation can be stopped (see Lines 12-

13). Otherwise, a deviation function fΔ is used in order to search

for a better path p. p is then updated accordingly (see Lines 14-15).

In Line 18, the next node is selected for expansion to continue the

algorithmic computation. Finally, the Boolean return value based

on Δ is determined in Lines 20-24.

Algorithm 1. Computation of p.

The algorithm presented in this section is found to perform well in

the case study on furniture manufacturing (see Section 4). When

used in other use cases, however, deadlocks can occur and the

interpretation of the results can vary [21]. As the framework in

this article is adopted within IUNO (see Section 8), future

additions to the algorithm are following.

5.2 Simulation
In this section, the implementation and execution of different

simulation runs as well as the evaluation of the simulation results

are discussed.

Algorithm 1 is implemented in GoLang [22] along with other

necessary software components such as XML decoding. The

choice for GoLang is made because of the language’s cross-

compilation feature, which benefits the usage within

heterogeneous manufacturing environments. Furthermore,

required libraries and other dependencies are included in the

binary file generated by GoLang’s compiler allowing for easy

distribution on existing systems. It is, however, also possible to

implement a model of a manufacturing environment by using

other programming languages that provide similar capabilities.

The framework can be called by a production planning system as

a simple function call due to its Boolean return value. This call

can be executed in Level 4 or Level 3 of the automation model

provided by Figure 1. Note that is also possible to return the

computed configurations C. Provided a dedicated compiler exists,

the derived configurations can be translated in machine code for

parametrization of the tooling machines in Levels 1-2.

As noted previously, Algorithm 1 requires several data as input.

The running example developed over the course of the previous

sections is used here for specifying the simulation use cases. Thus,

the simulated manufacturing layout GSim is shown in Figure 3.

Example 8. GSim is used to manufacture wooden cupboards with a

glass door. The cupboards are of cubic dimension with five

wooden sides and one glass side. For later assembly, drill points

need to be placed on the glass surface. The glass doors are

delivered by a supplier, as GSim is not capable of performing this

action on its own. Performing drilling actions on glass requires

specialized tooling that is not available in GSim.

Following Example 8, two types of Win are processed by GSim:

 Win
wood = { (2000, 1500, 30), wood, ∅, ∅ } and

 Win
glass = { (2000, 1500, 30), glass, ∅, ∅ }.

From them, the XML representations for Win
wood and Win

glass,

namely XW
wood and XW

glass respectively, are derived in order to

perform analysis on. XT
wood is shown in Figure 4; XT

glass is similar

to Figure 4 but does not include Lines 11-16. The drill points

specified in these lines are already placed by the supplier prior to

the start of production. All XML files follow the syntactical

structure shown in Figure 4 and are validated against a DTD.

Furthermore, XM
Sim specifies the actions required by the target

designs and the corresponding bounds.

The attacker scenario based on a real world use case from

Example 4 is described in the following example:

Example 9. Two kitchens are separately designed by a customer

(the third party) and issued electronically to the plant. In one case,

the design file has been deliberately altered to include drill points

on the glass surface.

For evaluation, two simulation runs of the furniture manufacturing

scenario are specified. They are denoted as Sim1 and Sim2

respectively. Sim1 is the reference run with no manipulated design

files present during processing of the workpieces. In Sim2,

however, XT
glass has been manipulated as described by Example 9.

For the sake of this example, XT
glass = XT

wood. Sim2 is based on an

observation by a plant operator, where no automated verification

step is implemented. As indicated in Example 4, this results in the

destruction of Win
glass.

The simulation runs also confirm this outcome as the frameworks

reports true for Sim1 and false for Sim2. The return values are

derived from an implicitly encoded information base within the

Require: XT, XW, XM, G

 {Initialize}

1: Δ = ∞

 {Check for Weak Statement}

2: if Weak Statement is not satisfied then

3: return false

4: end if

 {Check for Strong Statement}

5: Vi = fmap (vS)

6: while Vi ≠ ∅ do
7: Vi = fopt (Vi)

8: for all vi ∈ Vi do
9: XSLT = fcon (vi ,XM)

10: XC = fapp (vi ,XSLT ,XW)

11: Δ = fΔ (XC, XT)

12: if Δ = 0 then

13: exit while loop

14: else if Δ < fΔ (p) then

15: update p

16: end if

17: end for

18: Vi = fmap (V, XT)

19: end while

20: if Δ = 0 then

21: return true

22: else

23: return false

24: end if

171

framework as noted in Section 5.1. Here, the list of valid actions

are stated for each material. As drilling is not specified for the

material glass, the framework reports its value to the production

planning system. Malicious design files, thus, can be detected and

reacted to prior the physical production process is started. A

human operator can be notified in a subsequent step in order to

perform a detailed investigation on the outcome of Sim2. As

discussed in Section 1, a human-in-the-loop is prone to error.

However, employing an automated solution simulating the

outcome of manufacturing a target design supports the human

operator. He can spend more time on the verification of identified

potential critical designs and has the advantage of knowing the

overall outcome of the verification. Therefore, he can focus on

identifying the cause of the incident.

6. DISCUSSION
This work showed how to model and simulate manufacturing

environments for security verification of third party design files.

Concepts adopted from graph theory are used in order to develop

a flexible framework for modeling purposes. Further, an extensive

example based on modeling the production process in furniture

manufacturing is provided. The presented approach to modeling is

flexible and can be adapted to meet the requirements of other

industries, as basic concepts are transferable. The framework

definition is intended to provide a description that is independent

of a specific architecture as the operational technology tends to be

heterogeneous between companies and organizations [23]. Next,

guidelines for implementation of the presented solution are

provided. An algorithm for computation of the defined properties

is presented. For implementation, technologies that can easily

integrate into existing OT environments are used [18]. As markup

language, XML is employed as it is standardized and widely used

in manufacturing. For implementation, GoLang is used in order to

provide a software component that can be easily distributed on

heterogeneous environments. Two scenarios are specified and

simulated. The results of the simulation show the feasibility of the

framework.

7. CONCLUSION
This article provides a building block for the security of modern

and future manufacturing environments within the context of

Industrie 4.0. The discussed approach is not only relevant for

security verification but, furthermore, relevant in production

planning as it can be used to decide upon the manufacturability of

a target design that is provided by a third party. In the context of

large-scale customer-individual production, the automated

solution presented here can offer a benefit within production

planning. The authors work closely with tooling machine vendors

and operators in order to provide a relevant contribution that can

be adapted for usage in daily operations. The solution presented

here is based on a real-life case study in a manufacturing plant.

8. PROJECT FUNDING
The presented work is part of the German national security

reference project IUNO (http://www.iuno-projekt.de). The project

is funded by the Federal Ministry of Education and Research

(BMBF) and aims to provide building blocks for security in the

emerging field of Industrie 4.0.

9. REFERENCES
[1] Kagermann, H., Helbig, J., Hellinger, A., and Wahlster, W.

2013. Recommendations for implementing the strategic

initiative INDUSTRIE 4.0: Securing the future of German

manufacturing industry. Technical report. Industrie 4.0

Working Group, Frankfurt/Main, Germany.

[2] Hollender, M. 2010. Collaborative process automation

systems. Technical Report. International Society of

Automation (ISA), Research Triangle Park, NC.

[3] ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod). 2010.

Enterprise-Control System Integration – Part 1: Models

and Terminology. International Society of Automation

Standard (ISA), Research Triangle Park, NC.

[4] Eckert, C. 2014. IT-Sicherheit: Konzepte-Verfahren-

Protokolle. De Gruyter, Oldenbourg, Germany.

[5] Avizienis, A., Laprie, J., Randell, B., and Landwehr, C.

2004. Basic concepts and taxonomy of dependable and

secure computing, IEEE transactions on dependable and

secure computing, 1, 11–33. DOI:

https://doi.org/10.1109/TDSC.2004.2

[6] Sadeghi, A., Wachsmann, C. and Waidner, M. 2015.

Security and privacy challenges in industrial internet of

things. Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE, 1–6. DOI:

https://doi.org/10.1145/2744769.2747942

[7] Byres, E. and Lowe, J. 2004. The myths and facts behind

cyber security risks for industrial control systems.

Proceedings of the VDE Kongress, 116, 213–218.

[8] Belikovetsky, S., Yampolskiy, M., Toh, J. and Elovici, Y.

2016. dr0wned - cyber-physical attack with additive

manufacturing. arXiv:1609.00133. Retrieved from

https://arxiv.org/abs/1609.00133

[9] Wells, L., Camelio, A., Williams, C. and White, J. 2014.

Cyber-physical security challenges in manufacturing

systems. Manufacturing Letters, 2, 74–77. DOI:

https://doi.org/10.1016/j.mfglet.2014.01.005

[10] Turner, H., White, J., Camelio, J., Williams, C., Amos, B.

and Parker, R. 2015. Bad parts: Are our manufacturing

systems at risk of silent cyberattacks? IEEE Security and

Privacy, 13, 40–47. DOI:

https://doi.org/10.1109/MSP.2015.60

[11] Srinivasan, V. 2008. Standardizing the specification,

verification, and exchange of product geometry: Research,

status and trends. Computer-Aided Design, 40, 738–749.

DOI: https://doi.org/10.1016/j.cad.2007.06.006

[12] Sturm, L., Williams, C., Camelio, J., White, J. and Parker,

R. 2017. Cyber-physical vulnerabilities in additive

manufacturing systems: A case study attack on the STL

file with human subjects. Journal of Manufacturing

Systems, 44, 154–164. DOI:

https://doi.org/10.1016/j.jmsy.2017.05.007

[13] Vincent, H., Wells, L., Tarazaga, P. and Camelio, J. 2015.

Trojan detection and side-channel analyses for cyber-

security in cyber-physical manufacturing systems.

Procedia Manufacturing, 1, 77–85. DOI:

https://doi.org/10.1016/j.promfg.2015.09.065

[14] ISO 6983-1:2009. 2009. Automation systems and

integration – Numerical control of machines – Program

format and definitions of address words – Part 1: Data

format for positioning, line motion and contouring control

systems. International Organization for Standardization

Standard (ISO), Geneva, Switzerland.

[15] Bondy, J. et al. 1976. Graph theory with applications.

North Holland, New York, NY.

[16] Suzić, N., Stevanov, B., Ćosić, I., Anišić, Z. and Sremčev,

N. 2012. Customizing products through application of

group technology: A case study of furniture

manufacturing. Strojniški vestnik-Journal of Mechanical

172

Engineering 58, 724–731. DOI:

http://dx.doi.org/10.5545/sv-jme.2012.708

[17] Bray, T., Paoli, J., Sperberg-McQueen, C., Mailer, Y. and

Yergeau, F. 2008. Extensible Markup Language (XML)

1.0 (5th edition). World Wide Web Consortium (W3C)

Recommendation. Retrieved from

https://www.w3.org/TR/xml/

[18] Sauter, T. 2005. Integration aspects in automation - a

technology survey. 10th IEEE Conference Emerging

Technologies and Factory Automation, 2, 9-pp. DOI:

https://doi.org/10.1109/ETFA.2005.1612688

[19] Kay, M. et al. 2017. XSL transformations (XSLT) version

3.0. World Wide Web Consortium (W3C)

Recommendation. Retrieved from

https://www.w3.org/TR/2017/REC-xslt-30-20170608/

[20] Ekelhart, A., Kiesling, E., Grill, B., Strauss, C. and

Stummer, C. 2015. Integrating attacker behavior in IT

security analysis: a discrete-event simulation approach.

Information Technology and Management, 16, 221–233.

DOI: https://doi.org/10.1007/s10799-015-0232-6

[21] Even, S. 2011. Graph algorithms. University Press,

Cambridge, MA.

[22] Newmarch, J. 2017. Network Programming with Go:

Essential Skills for Using and Securing Networks (1st. ed.).

Apress, New York, NY.

[23] Thomesse, J. 2005. Fieldbus technology in industrial

automation. Proceedings of the IEEE, 93, 1073–1101.

DOI: https://doi.org/10.1109/JPROC.2005.849724

173

