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ABSTRACT 

Customer-individual production in manufacturing is a current 

trend related to the Industrie 4.0 paradigm. Creation of design 

files by the customers is becoming more frequent. These design 

files are typically generated outside the company boundaries and 

then transferred to the organization where they are eventually 

processed and scheduled for production. From a security 

perspective, this introduces new attack vectors targeting 

producing companies. Design files with malicious configuration 

parameters can threaten the availability of the manufacturing plant 

resulting in financial risks and can even cause harm to humans. 

Human verification of design files is error-prone why an 

automated solution is required. A graph-theoretic modeling 

framework for machine tools capable of verifying the security of 

product designs is proposed. This framework is used to model an 

exemplary production process implemented in a wood processing 

plant based on the experiences of a real-world case study. 

Simulation of the modeled scenario shows the feasibility of the 

framework. Apart from security verification, the approach can be 

adopted to decide if a product design can be manufactured with a 

given set of machine tools.   

CCS Concepts 

• Security and privacy➝Domain-specific security and privacy 

architectures. 

Keywords 

Security; Manufacturing; Modeling; Graph-Based Analysis; 

Production Planning; Industrie 4.0. 

1. INTRODUCTION 
Industrie 4.0 is the ongoing evolution of the manufacturing 

landscape in Germany that is also observed in other countries. It is 

characterized by the increasing integration of cyber-physical 

systems into the manufacturing process. One desired effect of this

development is an increase in flexibility to address market 

demands. [1] identifies, among others, the possibility for strong 

incorporation of customer-individual features into the production 

cycle. Before production of these customer-individual goods can 

begin, the design for this product needs to be fixed. This is 

required for production planning to generate an efficient 

production schedule in terms of machine utilization. Offering 

tools to the customer for creation of the design files is a cost-

effective way to collect customer requirements. The tools can be 

made accessible, for example, via an online service or in local 

subsidiaries. After the design is generated, it must be transferred 

to the production planning system to schedule and start the 

production. 

Figure 1 provides an overview of the communication based on a 

functional model of different automation layers within a plant [2]. 

The model itself is based on the ISA 95 standard [3] with the 

corresponding numbers of the individual layers, or levels, given 

on the left side of Figure 1. The third party design file arrives at 

the top layer, “Business Planning & Logistics”. This layer is, 

among others, responsible for the overall production planning 

within the plant. From here, the design file is transferred to the 

subjacent layer “Manufacturing Operations & Control”, where 

detailed production planning takes place. The order for 

manufacturing of individual products is dispatched from here; 

manufacturing of the product takes place in the lowest layer. 

Within the Industrie 4.0 paradigm, a stronger interconnection of 

the different layers takes place and the boundaries between them 

are starting to disappear. 

Information technology (IT) security concerns itself with the 

protection of computer systems by achieving protection goals [4]. 

Major protection goals are confidentiality, data integrity, and 

availability, typically referred to as CIA. Varying definitions are 

available in literature, in the context of this work the protection 

goals are interpreted as follows. Confidentiality means that 

information is disclosed only to authorized entities. Data Integrity 

describes the accuracy and consistency of stored or transmitted 

data and ensures that no manipulation or unauthorized alteration 

of the data occurs. Availability is a concept also related to the 

design of dependable systems [5]. It encompasses the availability 

for authorized and correct service. In manufacturing, the 

availability of the manufacturing environment is often seen as the 

most relevant protection goal by OT operators [6]. Accepting 

unverified third party design files leads to a security risk 

threatening the availability of the entire production cycle as seen 

in Figure 1. Trusted third party connections, e.g., to a vendor, are 

a possible entry point for external attacks to industrial controls 

systems (ICSs) [7]. This entry point is becoming more relevant 

due to new Industrie 4.0 business models that favor stronger inter-
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connection of ICSs, also beyond company boundaries. 

Manipulation of design file parameters can lead to compromised 

product quality [8]. Furthermore, a manipulated design file can 

lead to an overall loss of machine availability and, therefore, 

production capacity [9]. Performing operations outside the 

processing capability of a machine can lead to machine downtime 

due to unplanned maintenance, for example, replacement of 

broken machine tools or clean up procedures. 

 

Figure 1. Layers of automation based on [2, 3]. 

 

Currently implemented production cycles are not well equipped to 

identify manipulated design files. Third party or other design files 

are checked by a process that incorporates a human-in-the-loop. 

Human subject experimentation with engineering students on 

identification of malicious design files show that humans are 

prone to error [9, 10]. While some of the participants in the 

conducted studies were able to identify malicious design files, 

intentional manipulation of the files, i.e., a cyber-attack, was not 

believed to be the cause. The authors of the studies suggest, 

among others, educational awareness and enhancements in the 

quality control process for mitigation. Awareness of engineering 

personal concerning security is important and is further aided with 

adequate tool support. Since quality control takes place after 

manufacturing of the potentially defective product, which can lead 

also to machine downtime, a verification step prior to production 

is beneficial towards the availability of the whole production 

environment. 

An automated software solution to aid engineers in identifying 

malicious design files is proposed. The framework needs to be 

adoptable to encompass the wide variety of machine tools and 

their configurations present in real-world manufacturing plants. 

For this, the framework builds on well-established formal 

methods. To further aid in minimizing machine downtime, a 

simulation-based approach is proposed. The feasibility of 

manufacturing a product can be verified before production starts 

without involving real world machines. This helps in production 

planning. The focus of the framework is on security-related design 

file verification but can further be extended to verify if a product 

can be manufactured given a set of machines and machine 

configurations. 

2. RELATED WORK 
The exchange of product geometry as well as the verification of 

the specified geometry is subject of standardization [11]. Here, the 

deviation of a manufactured product from its ideal form according 

to product geometry is assessed. No automated approach is 

proposed, a human-in-the-loop is considered necessary in the 

verification step. Further, the standards offer no support in 

deciding if a certain product geometry or specification can be 

harmful to a manufacturing environment. 

Verification of third party design files for manufacturing is a 

known problem in Additive Manufacturing (AM). AM, or 3D 

Printing, is the production of parts by successively adding 

material to the part until the target design is met. In contrast to this, 

Subtractive Manufacturing (SM) is the production of parts by 

successively removing material from the part until the target 

design specification is reached. For AM, a Stereo Lithography 

(STL) file is generated from the initial Computer-Aided Design 

(CAD) file containing the part specification. This STL file is then 

used in the further steps of AM. Existing work on identifying 

malicious design files for AM focus on STL file verification. [12] 

describes the possibility and effects of attacks on AM systems. 

The focus is on attacks where a void is introduced in the design of 

a STL file. A void is a hollow region of a part completely 

enclosed by material. Introduction of voids in the part’s design 

can result in reduced structural strength and, therefore, in reduced 

product life of the product it is used to assemble. The authors 

recommend, among others, improved software checks on STL 

design files as protective measures. [13] examines the mani-

pulation of part production in AM by assessing its intrinsic 

properties. Their work focuses on individual parts rather than the 

assembly line and does not take damage caused to the 

manufacturing environment into account. 

SM processes do not include the usage of STL files. Rather, the 

CAD file is converted into machine code as specified, for example, 

in ISO 6983 [14]. Verification of design files for SM in the 

context of security is a field of research that has not received 

attention in the past and is addressed within this work. 

3. CONCEPTUAL FRAMEWORK 
In this section, a conceptual description of the proposed 

framework for security verification of design files is presented. 

The focus is on use cases for SM; however, the approach is 

flexible and can be extended to encompass AM scenarios as well. 

The main design goal for the framework is adaptability. This is 

necessary to encompass technological progress in modern 

manufacturing environments. Further, the respective domain 

where manufacturing takes place needs to be considered. For 

example, an assembly line of a furniture manufacturing plant uses 

a different set of tooling machines as food packaging lines. 

Furthermore, within the same domain, tooling machines from a 

variety of vendors can be employed. These tooling machines vary 

in their range of operation and the included machine tools. In 

addition, a range of different products can be produced on an 

assembly line given a fixed set of tooling machines. 

To achieve adaptability for this wide variety of possible 

applications and tooling machine configurations, a graph-theoretic 

approach is proposed [15]. Graphs are a tool of discrete 

mathematics used to model objects and their relations with each 

other. A graph G is defined as an ordered pair  

Business Planning & Logistics

Plant Production Planning, etc.

Manufacturing Operations & Control

Detailed Production Planning, etc.

Batch Control, Continuos Control, 

Discrete Control

Level 4

Level 3

Level 0, 1, 2
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G = (V, E) where V is a set of vertices and E is a set of edges. The 

graph G here is the model of a manufacturing environment. A 

vertice v ∈ V is a functional unit found in a manufacturing 

environment. This can include machine tools executing a 

subtractive process, e.g., cutting of material, or a non-subtractive 

process, e.g., pick-and-place or material refinement. A functional 

unit v ∈ V is not a representation of a singular machine purchased 

from a tooling machine vendor. Rather, different functional units 

are found in modern tooling machines. V compromises all 

functional units of a manufacturing environment, thus, represents 

the overall capability of the modeled manufacturing environment 

G. An edge e ∈ E is a directed connection between two vertices vk 

and vl denoted as e = (vk, vl); the set of all edges vn represents the 

path p of a workpiece W through a manufacturing environment. A 

workpiece can pass through the same set of vertices and edges 

several times to undergo successive processing. Thus, G is a 

cyclic, directed graph. 

Figure 2 shows an example for the model of a simple 

manufacturing environment. The ingoing workpiece Win arrives at 

vertice v1 where it is processed. Then, it is transferred via edge e1 

to v2 where further processing ensures. Similarly, it is transferred 

via e2 to v3. Here, the manufacturing process can be repeated 

iteratively via e3. Once the target workpiece description of a 

design file is matched, the outgoing workpiece Wout leaves the 

manufacturing environment. 

 

Figure 2. Representation of a directed graph. 
 

The conceptual descriptions in this article are illustrated by a 

running example that is developed over the course of this article, 

implemented, and simulated in Section 5. 

Example 1. v1 can be a machine tool designated to changing the 

orientation of the workpiece, v2 can perform a subtractive 

operation on the workpiece, and v3 executes a pick and place task 

putting the workpiece either back to v1 for turning or towards the 

outgoing path. In this example, Win can be a rectangular 

workpiece on which a subtractive action is performed on each 

side of Win. After the subtractive actions are performed, a 

workpiece Wout fitting the target description of a design file, in 

this example, a rectangular part with certain dimensional 

properties, is created. 

The design file contains a description of the workpiece Wout to be 

produced. In general, Wout can be produced with a variation of raw 

materials, a different set of tooling machines, and via several 

paths in the manufacturing environment. A path p is a route 

through a manufacturing environment G that satisfies the 

workpiece description D, i.e., generates Wout = D by traversal of G. 

Each of the connected vertices v that constitute p perform an 

action on the workpiece that is demanded by D. Considering the 

example above, this action can be a subtractive task where 

material is cut from the workpiece. This action is denoted as a 

transformation tv (W) = W′ where W is changed to W′ by the 

corresponding v ∈ p. The set of all actions that can be performed 

on Win while traversing p is denoted Tp. A node v is capable of 

performing an action; each individual action is limited by bounds 

as illustrated by Example 2. 

Example 2. An action describes a transformation a workpiece can 

experience by traversing through a node, e.g., cutting, drilling, 

gluing, placing. Bounds describe the operational limitations of an 

action, e.g., the drilling tool can be placed by the machine’s 

actuators within a certain area of the tooling machine for placing 

drill points. 

Given these definitions, it is possible to derive statements about 

the capabilities of the manufacturing environment modeled by G. 

First, a simple statement considering only the actions is provided: 

Statement 1 (Weak Statement). The existence of a set of 

vertices vp ∈ V capable of performing all actions demanded by 

D and Wout is said to satisfy D and Wout. 

Note that the existence of vp does not guarantee if the target 

design can be manufactured within the existing manufacturing 

environment, i.e., its manufacturability is undecided. This is 

because also the bounds of a tooling machine must be considered. 

For example, the existence of a drill alone does not guarantee that 

the required drill head is present or the drill point can be placed on 

the specified location of the workpiece. In order to decide if the 

target design can be manufactured, the following statement, which 

implicitly considers the bounds, is required: 

Statement 2 (Strong Statement). The existence of a path p in 

G with Tp (Win) = Wout shows the manufacturability of D on a 

manufacturing environment G. 

If Statement 2 is true, the target design can be manufactured 

within the present manufacturing layout. By extension, this also 

includes that no incidents, security-related or otherwise, occur 

during manufacturing as the occurrence of an incident means a 

violation of certain bounds. Statement 2 is algorithmically 

computed in Section 5. For this, the following assumptions need 

to be met: 

Assumption 1. The manufacturing environment G contains 

exactly one starting node vs. Win is always first processed by 

vs. 

This is necessary for computation of p. Note that Assumption 1 

can always be ensured by the addition of a virtual starting node. 

Assumption 2. The processing or traversal of Win in G is 

fixed. The order for traversing is implicitly given by D. 

It is possible that more than one path p exists in G. Therefore, the 

computation can be enhanced by optimization methods. 

Assumption 3. The traversal order of Assumption 2 is 

reasonable. 

A manufacturing environment is set up to avoid unreasonable 

operations. For example, applying a refinement to the workpiece 

and then performing a subtractive action removing the refined part 

is unreasonable. Thus, production planning tends to reduce these 

operations, as they are harmful to the overall business. 

In Section 4, modeling of the workpieces Win and Wout is further 

described in more detail with a comprehensive example. Notes on 

the computation of a path through the graph, i.e., deciding the 

manufacturability, are provided in Section 5. In that section, 

Assumptions 1 - 3 are used to provide an algorithmic solution. 

e3 

e1 e2 Wout 
v1 v2 v3

Win 
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4. CASE STUDY: FURNITURE 

MANUFACTURING 

In this section, a case study for the framework developed in 

Section 3 is presented. The framework is applied to the domain of  

furniture manufacturing. For this, a basic model of a 

manufacturing environment is assumed. 

Typical shop-floor setups in furniture manufacturing are 

organized to provide an environment in which specific actions are 

performed. Among others, these actions are cutting, drilling, and 

border finishing [16]. Cutting involves the dimensional reduction 

of a wooden plate. In this case study, the wooden plate is the 

ingoing workpiece Win. Drilling is the process of placing a drill 

point on the surface of the workpiece. Border finishing is 

comprised of several individual actions. In this article, a 

simplified process involving “border banding” and “border 

finishing” is assumed. Border banding is the process of attaching 

a border to a wooden plate; border finishing applies a finishing to 

an attached border. In addition, the placing operation is added. It 

changes the orientation of a workpiece according to a pre-defined 

frame of reference. To summarize, the set of actions consists of 

cutting, drilling, border banding, border finishing, and placing 

(see Example 3). 

Modeling of Win can be highly domain-specific why a reference 

model of Win for furniture manufacturing is provided at this point. 

However, it can be argued that some of the aspects described here 

can be readily transferred to domains outside furniture 

manufacturing. Tooling machines employed in furniture 

manufacturing provide, inter alia, the actions described above. For 

dimensional reduction, i.e., cutting, the dimensions of the 

workpiece need to be included in the model. Therefore, a 

dimension vector w for Win is added with w = (x, y, z) where x, y, 

and z are the three-dimensional coordinates in relation to a pre-

defined coordinate system. The material of Win is encoded by a 

descriptive entity M. Material descriptions need to be unique and 

documented in a well-defined list of descriptors relevant to the 

context of the scenario. Drilling is described by an unordered list 

LD containing the coordinates of already placed drill points. 

Additional drill points specified by D are assumed to be known to 

the production planning system as it has information on D. Note 

that a reference frame for describing the orientation of the 

workpiece needs to be defined a priori. Borders are described by 

another unordered list LB containing their properties, i.e., the type 

of the border itself and the applied border finishing. Thus, W is a 

4-tupel W = {w, M, LD, LB}. 

Example 3. Figure 3 shows a model of a simplified shop floor 

setup; for better readability, the edge labels are omitted. Win is 

first processed by the node providing placing functionality 

(denoted as vP), i.e., performs a change in orientation. From here, 

W′ passes through the node designated to perform a cutting 

operation (vC). Then, it is transferred to border banding (vB) 

either directly or via an intermediate step through the node 

performing drilling operations (vD). After border banding, border 

finishing is applied (vF). Several loops can be performed through 

the manufacturing environment if further operations need to be 

applied to W′. In this case, it is transferred back to vP where the 

described process begins anew. When no further loops are 

required to meet the demands of D, the workflow is completed and 

Wout is produced. 

In order to provide a description of a node’s capabilities, 

additional information needs to be encoded in the model. For one, 

the input dimensions a node is capable of processing is required. 

This is necessary to decide if a workpiece can be processed by a 

node. Next, the bounds (see Section 3) of a node are encoded. For 

cutting and drilling, the bounds describe the range within cuts can 

be performed or drill points can be placed, respectively; for border 

processing, the bounds are the types of border placements and 

border finishings that can be applied. The data model of this 

information for computational processing is described in Section 5. 

Given the model of the manufacturing environment above, 

security analysis can be conducted. It is possible to infer 

statements from the model that have a malicious effect on the 

availability of the production. 

Example 4. Consider a scenario where a drill is specified to be 

placed on a glass surface contained in Win. The glass surface can 

be part of a small door often found in kitchen or living room 

furniture. Thus, if the processing node assumes due to a 

manipulated Win that M is a wooden surface and places a drill 

point on it, the result will most likely be the destruction of Win. 

Further, it will be necessary to provide unscheduled maintenance 

to the processing node resulting in a loss of production capability. 

Example 4 is based on and motivated by real-world incidents 

experienced by project partners in IUNO (see Section 8). 

Verification was conducted by a human-in-the-loop. As described 

in Section 1, this is an error prone process. In Section 5, an 

automated solution to this problem is given and implemented with 

standard technologies. 

5. EXPERIMENTAL EVALUATION 
In this section, the experimental evaluation of the modeling 

framework described in the previous sections is provided. First, a 

reference implementation of the framework is provided in Section 

5.1. Next, this implementation is used in Section 5.2 to simulate 

the case study in furniture manufacturing with varying parameters. 

5.1 Implementation 
In this section, a reference software architecture of the 

implementation is discussed. 

Wout 
vP vC vD

Win 
vB vF

Figure 3. Model of simple manufacturing environment. 
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As descriptive file format standard Extended Markup Language 

(XML) is employed [17]. This choice is due to the acceptance and 

widespread use of XML in modern OT environments [18]. In the 

following, X denotes a descriptive XML specification. In order to 

compute the manufacturability of a design file, certain 

information needs to be known a priori: descriptions of the tooling 

machines’ capabilities XM, the workpiece dimensions XW derived 

from Win, and the target furniture design XT derived from Wout. XM 

is ideally provided by the vendor of the tooling machines while 

XW and XT are best specified by the OT operator of the 

manufacturing environment. 

Example 5. Figure 4 shows the XML encoding of XT given the 

manufacturing environment of Figure 3. The dimension vector w 

is seen in Lines 4-8, the material description in Line 9, the list of 

drill points LD in Lines 11-16, and the border properties 

description LB in Lines 17-19. 

Note that XW uses the same structure and elements while XM needs 

to provide matching descriptors, e.g., drill, for the capabilities of 

the tooling machine. The structure of the design files is validated 

against a predefined Document Type Definition (DTD) (see Line 

2 in Figure 4), which specifies grammatical rules for XML files. 

The individual operations performed by a tooling machine vn ∈ V 

are implemented via Extensible Stylesheet Language 

Transformations (XSLTs) [19]. They are used to transform XML 

files into other XML files. Furthermore, XSLT allows 

modification of an XML file by adding or removing individual 

XML nodes and by performing arithmetic operations. Those 

properties are used to update XW while it traverses p. 

Example 6. Consider an XW with dimensions w = (2000, 1500, 30) 

and an XT as seen in Figure 4. When regarding only the 

dimensional vector, the value of x = 2000 needs to be reduced by 

10 units in order to meet the target description and, therefore, 

manufacture the final product design. For this, a cutting action 

needs to be performed by one of the tooling machines vn ∈ V. 

It is necessary to compute this difference between the target 

design XT and the current state of the design XW in order to 

proceed with design file verification. This difference is denoted as 

Δ≥ 0. When Δ= 0, the manufacturability of a target design on a 

manufacturing environment G is given. The transformation tv (see 

Section 3) is expressed by a corresponding configuration cv within 

the context of computing XML files. A Δ > 0 is reduced by 

applying a set of configurations C where a cn ∈ C describes an 

individual configuration of a tooling machine vn. 

Example 7. The corresponding configuration c is a dimensional 

vector with c = (10, 0, 0). In case of other operations (e.g., 

drilling), the computed tooling machine configuration is again 

represented as an unordered list. Next, a tooling machine capable 

of performing a cut within the specified bounds (see Section 3) 

needs to be found. Otherwise, the desired operation cannot be 

performed and XT is not manufacturable on G as no path p 

through G is possible. 

Note that the knowledge on how to appropriately reduce Δ needs 

to be encoded within the framework. It is known to the framework 

that a cut reducing the dimensional vector w is beneficial towards 

meeting XD as illustrated by Example 7. This knowledge is 

encoded internally in the framework. For future work, an 

externalized representation of knowledge, e.g., via an ontology, 

can provide benefits to scalability and extension of the framework 

towards further security studies [20]. 

The set of vertices that constitute a path p is computed by 

Algorithm 1. If a valid p with Δ = 0 is found, the algorithm returns 

true, otherwise false. For better readability, implementation 

specific details, e.g., the use of temporary variables in Line 10 or 

data structure operations for p in Line 15, are omitted. The 

algorithm starts with confirming the trivial Weak Statement (see 

Statement 1) in Line 2. If it is confirmed positively, the 

manufacturability, i.e., the Strong Statement (see Statement 2), is 

verified. For this, the input graph G is mapped by function fmap (v) 

(see Line 5). It returns all nodes reachable from the input node v. 

1  <?xml version="1.0" encoding="UTF-8" standalone="no"?> 

   <!DOCTYPE board SYSTEM "board.dtd"> 

3  <board> 

     <size> 

5      <xdim>1990</xdim> 

       <ydim>1500</ydim> 

7      <zdim>30</zdim> 

     </size> 

9    <material type="wood"/> 

     <operations> 

11   <holes tool="drill"> 

       <hole id="ID_drill_01" diameter="5" pos_x="100" pos_y="100" pos_z="10"/> 

13     <hole id="ID_drill_02" diameter="5" pos_x="150" pos_y="100" pos_z="10"/> 

       <hole id="ID_drill_03" diameter="5" pos_x="100" pos_y="150" pos_z="10"/> 

15     <hole id="ID_drill_04" diameter="5" pos_x="150" pos_y="150" pos_z="10"/> 

     </holes> 

17   <edges> 

       <edge id="ID_edge_01" type="a" finish="normal"/> 

19   </edges> 

     </operations> 

21 </board>

Figure 4. Example for target design specification XT. 
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This is possible since Assumption 2 holds. As input parameter, vs 

from Assumption 1 is chosen. 

Computation of Statement 2 starts with Line 6. Here, candidates 

of vertices vi for inclusion in p are stored in Vi, which is initially 

filled by function fmap. The computation will continue as long as 

fmap returns further nodes vi for processing (see Line 18). They are 

individually processed and evaluated towards their inclusion in p 

starting at Line 8. Prior to this, optimization of Vi can be 

performed by an optimization function fopt due to Assumption 3, 

which is reasonable in more complex manufacturing layouts. In 

Lines 9-11, the configuration in the form of an XSLT XSLT for a 

node vi is computed by function fcon. Then, it is applied to XW by 

function fapp resulting in an updated description XC. XC and XT are 

then used to compute Δ. If Δ = 0, the target design can be 

manufactured and the computation can be stopped (see Lines 12-

13). Otherwise, a deviation function fΔ is used in order to search 

for a better path p. p is then updated accordingly (see Lines 14-15). 

In Line 18, the next node is selected for expansion to continue the 

algorithmic computation. Finally, the Boolean return value based 

on Δ is determined in Lines 20-24. 

 

Algorithm 1. Computation of p. 
 

The algorithm presented in this section is found to perform well in 

the case study on furniture manufacturing (see Section 4). When 

used in other use cases, however, deadlocks can occur and the 

interpretation of the results can vary [21]. As the framework in 

this article is adopted within IUNO (see Section 8), future 

additions to the algorithm are following. 

5.2 Simulation 
In this section, the implementation and execution of different 

simulation runs as well as the evaluation of the simulation results 

are discussed. 

Algorithm 1 is implemented in GoLang [22] along with other 

necessary software components such as XML decoding. The 

choice for GoLang is made because of the language’s cross-

compilation feature, which benefits the usage within 

heterogeneous manufacturing environments. Furthermore, 

required libraries and other dependencies are included in the 

binary file generated by GoLang’s compiler allowing for easy 

distribution on existing systems. It is, however, also possible to 

implement a model of a manufacturing environment by using 

other programming languages that provide similar capabilities. 

The framework can be called by a production planning system as 

a simple function call due to its Boolean return value. This call 

can be executed in Level 4 or Level 3 of the automation model 

provided by Figure 1. Note that is also possible to return the 

computed configurations C. Provided a dedicated compiler exists, 

the derived configurations can be translated in machine code for 

parametrization of the tooling machines in Levels 1-2. 

As noted previously, Algorithm 1 requires several data as input. 

The running example developed over the course of the previous 

sections is used here for specifying the simulation use cases. Thus, 

the simulated manufacturing layout GSim is shown in Figure 3. 

Example 8. GSim is used to manufacture wooden cupboards with a 

glass door. The cupboards are of cubic dimension with five 

wooden sides and one glass side. For later assembly, drill points 

need to be placed on the glass surface. The glass doors are 

delivered by a supplier, as GSim is not capable of performing this 

action on its own. Performing drilling actions on glass requires 

specialized tooling that is not available in GSim. 

Following Example 8, two types of Win are processed by GSim: 

 Win
wood = { (2000, 1500, 30), wood, ∅, ∅ } and 

 Win
glass = { (2000, 1500, 30), glass, ∅, ∅ }. 

From them, the XML representations for Win
wood and Win

glass, 

namely XW
wood and XW

glass respectively, are derived in order to 

perform analysis on. XT
wood is shown in Figure 4; XT

glass is similar 

to Figure 4 but does not include Lines 11-16. The drill points 

specified in these lines are already placed by the supplier prior to 

the start of production. All XML files follow the syntactical 

structure shown in Figure 4 and are validated against a DTD. 

Furthermore, XM
Sim specifies the actions required by the target 

designs and the corresponding bounds. 

The attacker scenario based on a real world use case from 

Example 4 is described in the following example: 

Example 9. Two kitchens are separately designed by a customer 

(the third party) and issued electronically to the plant. In one case, 

the design file has been deliberately altered to include drill points 

on the glass surface. 

For evaluation, two simulation runs of the furniture manufacturing 

scenario are specified. They are denoted as Sim1 and Sim2 

respectively. Sim1 is the reference run with no manipulated design 

files present during processing of the workpieces. In Sim2, 

however, XT
glass has been manipulated as described by Example 9. 

For the sake of this example, XT
glass = XT

wood. Sim2 is based on an 

observation by a plant operator, where no automated verification 

step is implemented. As indicated in Example 4, this results in the 

destruction of Win
glass. 

The simulation runs also confirm this outcome as the frameworks 

reports true for Sim1 and false for Sim2. The return values are 

derived from an implicitly encoded information base within the 

Require:  XT, XW, XM, G 

     {Initialize} 

1:   Δ = ∞ 

     {Check for Weak Statement} 

2:   if Weak Statement is not satisfied then 

3:      return  false 

4:   end if 

     {Check for Strong Statement} 

5:   Vi = fmap (vS) 

6:   while Vi ≠ ∅ do 
7:      Vi = fopt (Vi) 

8:      for all vi ∈ Vi do 
9:         XSLT = fcon (vi ,XM) 

10:        XC = fapp (vi ,XSLT ,XW) 

11:        Δ = fΔ (XC, XT) 

12:        if Δ = 0 then 

13:           exit while loop 

14:        else if Δ < fΔ (p) then 

15:           update p 

16:        end if 

17:     end for 

18:     Vi = fmap (V, XT) 

19:  end while 

20:  if Δ = 0 then 

21:     return true 

22:  else 

23:     return false 

24:  end if
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framework as noted in Section 5.1. Here, the list of valid actions 

are stated for each material. As drilling is not specified for the 

material glass, the framework reports its value to the production 

planning system. Malicious design files, thus, can be detected and 

reacted to prior the physical production process is started. A 

human operator can be notified in a subsequent step in order to 

perform a detailed investigation on the outcome of Sim2. As 

discussed in Section 1, a human-in-the-loop is prone to error. 

However, employing an automated solution simulating the 

outcome of manufacturing a target design supports the human 

operator. He can spend more time on the verification of identified 

potential critical designs and has the advantage of knowing the 

overall outcome of the verification. Therefore, he can focus on 

identifying the cause of the incident. 

6. DISCUSSION 
This work showed how to model and simulate manufacturing 

environments for security verification of third party design files. 

Concepts adopted from graph theory are used in order to develop 

a flexible framework for modeling purposes. Further, an extensive 

example based on modeling the production process in furniture 

manufacturing is provided. The presented approach to modeling is 

flexible and can be adapted to meet the requirements of other 

industries, as basic concepts are transferable. The framework 

definition is intended to provide a description that is independent 

of a specific architecture as the operational technology tends to be 

heterogeneous between companies and organizations [23]. Next, 

guidelines for implementation of the presented solution are 

provided. An algorithm for computation of the defined properties 

is presented. For implementation, technologies that can easily 

integrate into existing OT environments are used [18]. As markup 

language, XML is employed as it is standardized and widely used 

in manufacturing. For implementation, GoLang is used in order to 

provide a software component that can be easily distributed on 

heterogeneous environments. Two scenarios are specified and 

simulated. The results of the simulation show the feasibility of the 

framework. 

7. CONCLUSION 
This article provides a building block for the security of modern 

and future manufacturing environments within the context of 

Industrie 4.0. The discussed approach is not only relevant for 

security verification but, furthermore, relevant in production 

planning as it can be used to decide upon the manufacturability of 

a target design that is provided by a third party. In the context of 

large-scale customer-individual production, the automated 

solution presented here can offer a benefit within production 

planning. The authors work closely with tooling machine vendors 

and operators in order to provide a relevant contribution that can 

be adapted for usage in daily operations. The solution presented 

here is based on a real-life case study in a manufacturing plant. 
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