On the Design of Passive Resonant Circuits to Measure Local Pulse Wave Velocity in a Stent

Jonathan Schächtele

Abstract—In-stent restenosis is a frequent complication after stent implantation. This article investigates the design of a passive sensor system to be integrated into a stent for the detection of an in-stent restenosis by measuring the local pulse wave velocity (PWV). The proposed system uses two resonant circuits consisting of a capacitive pressure sensor and a coil as transponders. The pressure sensors are located at the proximal and distal end of the stent. An alternating external magnetic field with a constant frequency is applied such that the resonance frequencies of the transponders cross the excitation frequency when the pulse wave passes. The time delay between the resonances at the transponders can be captured to obtain the PWV. A model for the measurement system and a correlation between transponder design parameters and minimal resolvable time delay are derived. This correlation is based on the criterion that the 3dB bandwidth of the transponder resonances may not overlap in the measurement time interval. This correlation can be used to design and analyze a transponder system for the proposed measurement system. In an experiment, in which the pressure sensors have been emulated by varactor diodes, it could be shown that the model is valid and that the criterion is suitable. Finally, the relevant design parameters of the transponders have been identified and their limitations investigated.

Index Terms—passive resonant circuits, resonant sensors, implantable, inductive coupling, pulse transit time, pulse wave velocity, wireless, blood flow, transponder, passive telemetry

I. INTRODUCTION

VASCULAR diseases are a major health concern in industrial countries. A very common manifestation is arteriosclerosis: a hardening and thickening of the blood vessel walls. It can have different causes, e.g., deposition of calcium in the vessel walls or deposition of plaque inside the vessel lumen. Arteriosclerosis can lead to an occlusion of the vessel, a stenosis, that causes a shortage in blood supply (ischemia) and, in worst case, provokes a myocardial infarction [1]. One common procedure to treat arteriosclerosis is implanting a mechanical support, a stent, in order to open and stabilize the vessel from the inside. However, in many patients a restenosis occurs [2], i.e., the vessel lumen is considerably reduced again due to excess cell growth. The mechanisms for this complication are not yet fully understood, but inflammatory responses probably play a key role [2]. The body’s response is not always considered harmful: A thin coverage of the stent with endothelial cells is desirable, as it smoothens the inner surface of the vessel and is supposed to reduce the risk of thrombosis [3], [4]. The usual follow-up procedure is to take clinical history every three to six months [5], but not all patients are symptomatic. Currently there is no non-invasive and reliable method to detect in-stent restenosis [6].

Given these issues, an apparent solution is to integrate a sensor system into the stent that enables a reliable and continuous monitoring of the site. Several research groups investigated such solutions, and great progress has been made. Chow et al. designed a wirelessly powered pressure sensor to be embedded in a stent [7]. Takahata et al. pursued an approach to measure pressure and flow velocity inside the stent with a sensor system that only needs passive components at the implanted side, which makes it potentially cheap and small [8], [9]. They also proposed to use the stent itself as an antenna. Both approaches have the drawback that they rely on absolute pressures or pressure differences. If the sensors are covered with endothelial cells or plaque, the measured values will be corrupted. Green et al. pursued a different method to detect sludge in a biliary stent [10]–[13]. They integrated a magnetoeelastic mechanical resonator in the stent which was excited via a magnetic field. Any mass loading induced by deposit changes its resonance frequency. Viswanath et al. refined this principle further to improve the integration in arterial stents [14]. This principle also only requires passive components. But, just as the pressure measurement, it is prone to be disturbed by cell coverage.

Therefore, the approach investigated in this article is based on the acquisition of the local pulse wave velocity (PWV) inside the stent instead of pressure, which was initially proposed in [15], [16]. It was also inspired by the before mentioned work and the fact that measurement of the mean carotid-femoral pulse wave velocity (PWV) is considered the “gold-standard” for the assessment of arterial stiffness among cardiologists [17].

The pulse wave propagates through the vascular system with every heart beat. The PWV denotes the speed of this wave, and can be described approximately by the Moens Korteweg equation [18, p. 57], [19]:

$$\text{PWV} = \sqrt{\frac{Eh}{2\rho R}}$$

In this equation, E denotes the Young’s modulus of the vessel wall, h the wall thickness, ρ the blood density, and R the vessel radius. A restenosis thickens and stiffens the stent conjointly. Both effects lead to an increased PWV. Thus, an increase of local PWV is an indication for restenosis inside the stent.

To measure PWV, a wireless system similar to [9] is proposed: Two capacitive pressure sensors are integrated into
the stent at both the proximal and the distal end. Each of them is coupled with an individual coil forming two LC resonators. These will be referred to as 'the transponders' throughout this article. An external readout unit with a transceiver coil generates a magnetic field and detects the change in impedance when one of the transponders is in resonance. A schematic set-up of the described system is shown in Fig. 1. The innovation of the method is to use the transponders to detect the instant of arrival of the pulse wave instead of measuring absolute pressures or pressure differences. This approach is expected to be more robust against light coverage of the sensors.

The purpose of this article is to model the electromechanical system from the pressure sensors to the inductive transmission, investigate the implications of this approach on the electrical design of the transponders and validate the model and the findings of the investigation by simulations and measurements.

II. PULSE WAVE DETECTION PRINCIPLE

The transponder resonance frequency f_{res} depends on the pressure at the sensor as follows:

$$f_{\text{res}} = \frac{1}{2\pi \sqrt{LC(p)}}.$$

(2)

In this equation, L is the inductance of the coil and $C(p)$ is the capacitance of the sensor that depends on the pressure p.

Instead of sweeping a frequency range with the generated field to track the resonance frequency, the concept is to excite with a constant frequency during measurement. The transponder circuits and the constant frequency, denoted observation frequency f_{obs}, are designed and chosen such that during a pulse cycle the resonance frequencies $f_{\text{res},1}$ and $f_{\text{res},2}$ of the transponders cross the observation frequency f_{obs}. The time between the resonances is recorded. Omitting a sweep is expected to reduce measurement time and consequently to increase temporal resolution.

The concept is illustrated in Fig. 1. It does not necessarily show a favorable arrangement, but is suitable to explain the operating principle. It is assumed that there are two identical transponders inside the stent. Their pressure sensors have an axial distance d along the stent. It is also assumed, that a pulse with the typical pressure curve $p(t)$ in Fig. 2 is traveling through the vessel. Due to wave propagation, the pulse curve appears at sensor 2 with a delay of the transit time Δt compared to sensor 1, where

$$\Delta t = \frac{d}{PWV}. \quad (3)$$

Both transponders are in resonance with f_{obs} at the same pressure p_0 described by

$$f_{\text{obs}} = \frac{1}{2\pi \sqrt{LC(p_0)}}. \quad (4)$$

The current induced in the transponder at resonance creates a magnetic field that overlays the generated field of the transceiver coil. This causes the impedance at the transceiver coil terminal to change, which can be detected. The effect will be referred to as the 'triggering condition' throughout this article. When p_0 is chosen reasonably (somewhere between minimum and maximum value of the pulse pressure curve), the triggering condition occurs at least twice during the pulse cycle for each transponder: at the rising and at the falling edge. The measurement of the time delay preferably takes place at the rising edge at the beginning of the pressure curve where it usually has a large gradient. Fig. 3 shows a magnification of this region, together with the delayed curve expected at sensor 2 (dashed), a triggering pressure p_0 (in this case 100 mmHg), the triggering times t_1 and t_2 and the delay between the resonances at the two transponders Δt.

Fig. 1: Concept of the PWV measurement system; 1) external transceiver coil, 2) magnetic field, 3) body surface, 4) blood vessel, 5) stent, 6) sensor 1 (proximal), 7) sensor 2 (distal), 8) coil 1, 9) coil 2, 10) propagation direction of the pulse wave, 11) Plaque

Fig. 2: Typical pulse pressure curve obtained at the common carotid artery [20] (values relative to atmospheric pressure)

Fig. 3: Detail of the pulse pressure curve; solid line: pressure at proximal sensor, dashed line: pressure at distal sensor

E.g. the area, that the transponder coils enclose, should be maximized in order to maximize inductive coupling.
III. MODEL OF THE MEASUREMENT SYSTEM

Fig. 4 shows an equivalent circuit of the proposed wireless measurement system, which resembles the one shown in [8]. For a single transponder similar models have been investigated repeatedly in literature (e.g. [21], [22]), but here it has been extended for two transponders. The inductance \(L_P \) together with the resistance \(R_P \) model the transceiver coil of the external unit. The implanted transponders are represented by the variable capacitances \(C_i \) and the inductances \(L_i \), where the index \(i \in \{1,2\} \) denotes the two sensors. \(R_i \) incorporates the resistance of the coils and the equivalent series resistance of the capacitive sensors. Parasitic inductances and capacitances are neglected, given that the operating frequency should be significantly lower than the self-resonances of the components. \(M_i \) denotes the mutual inductances between the transceiver and transponder coils. The mutual inductance \(M_3 \) between \(L_1 \) and \(L_2 \) is unwanted and should be kept small by design, but can not be avoided in a real set-up. Applying Kirchhoff’s voltage law to the circuit model leads to the system of equations:

\[
\begin{bmatrix}
U_P \\
0
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} \begin{bmatrix}
I_P \\
I_1 \\
I_2
\end{bmatrix}
\]

with

\[
\begin{aligned}
A_{11} &= R_P + j\omega L_P \\
A_{12} &= -j\omega M_1 \\
A_{13} &= -j\omega M_2 \\
A_{21} &= -j\omega M_1 \\
A_{22} &= R_1 + \frac{1}{j\omega C_1} + j\omega L_1 \\
A_{23} &= j\omega M_3 \\
A_{31} &= -j\omega M_2 \\
A_{32} &= j\omega M_3 \\
A_{33} &= R_2 + \frac{1}{j\omega C_2} + j\omega L_2 \\
\end{aligned}
\]

\[\omega = 2\pi f .\]

From these equations, the input impedance at the transceiver coil \(Z_P \) can be obtained:

\[
Z_P = \frac{U_P}{I_P} = \frac{\det \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}}{\det \begin{bmatrix}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{bmatrix}} . \ (7)
\]

IV. REQUIREMENTS ON THE TRANSPONDER CIRCUITS

In order to distinguish between the two resonances of the transponder circuits it is critical that their peaks do not overlap in the measurement time interval \(T_M \). Therefore, an important measure is the difference between the resonance frequencies of the transponders

\[
\Delta f_{\text{res}}(t) = |f_{\text{res},2}(t) - f_{\text{res},1}(t)|
\]

\[
= \left| \frac{1}{2\pi \sqrt{L_2 C_2(t)}} - \frac{1}{2\pi \sqrt{L_1 C_1(t)}} \right| \ (8)
\]

which is time-dependent. In \(T_M = [t_1, t_2] \), where \(t_1 \) and \(t_2 \) are the triggering times at the rising edge of the pulse curve as shown in Fig. 3, this measure may not drop below a value that depends on the bandwidth of the peaks.

A reasonable design criterion is to require that the 3 dB bands around the resonance frequencies do not overlap. For a weakly damped resonant circuit the 3 dB band extends almost symmetrically around the resonance frequency. This leads to the criterion

\[
\frac{1}{2} (B_1 + B_2) \leq \Delta f_{\text{res,min}} \ (9)
\]

where \(B_1 \) and \(B_2 \) are the 3 dB bandwidths of the transponders, and \(\Delta f_{\text{res,min}} \) is the minimum distance between the resonance frequencies in \(T_M \)

\[
\Delta f_{\text{res,min}} = \min \{ \Delta f_{\text{res}}(t) \mid t \in T_M \} . \ (10)
\]

Capacitive pressure sensors usually have an increasing characteristic, meaning that a higher pressure \(p \) at the membrane causes a higher capacitance \(C \). Thus, as the pressure is rising within \(T_M \), the resonance frequencies of the transponders decrease. While they decrease they cross the frequency of the generated field: the proximal sensor 1 at \(t_1 \) and the distal sensor 2 at \(t_2 \) (see Fig. 3). Therefore the relation

\[
f_{\text{res,1}}(t) \leq f_{\text{obs}} \leq f_{\text{res,2}}(t) \ \forall t \in T_M \ (11)
\]

applies.

To investigate the implications resulting from requirement (9) an expression for \(\Delta f_{\text{res,min}} \) is needed. For this, the pulse pressure curve and the characteristic of the capacitive pressure sensors are linearized around the triggering condition \(f_{\text{res},i} = f_{\text{obs}} \). The triggering condition can be given as

\[
f_{\text{obs}} = \frac{1}{2\pi \sqrt{L_i C_{0,i}}} \ (12)
\]

It is common to use this bandwidth definition in electrical engineering [23, p. 23].

If the quality factor \(Q \) is greater than 50, the deviation of the ratio \((f_2 - f_0)/(f_0 - f_1)\) from unity is less than 1%, with \(f_1 \) and \(f_2 \) being the 3 dB frequencies left and right of the resonance frequency \(f_0 \).
with the capacitance at the triggering condition
\[C_{0,i} = \frac{1}{L_i \cdot (2\pi f_{obs})^2}. \] (13)

With the linearization, the capacitances of the resonant circuits can be expressed as
\[C_i(p_i) \approx C_{0,i} + \frac{dC_i}{dp}\bigg|_{p_{0,i}} \cdot (p_i - p_{0,i}) \] (14)

and the corresponding pressures as
\[p_i(t) \approx p_{0,i} + \frac{dp}{dt}\bigg|_{t_i} \cdot (t - t_i) \] (15)

with
\[p_{0,i} = p|_{C_i = C_{0,i}} \] (16)

and
\[t_i = t|_{p_i = p_{0,i}}. \] (17)

Equation (8) can be rewritten by including (14) and (15) and taking (11) and (13) into account:
\[\Delta f_{res}(t) \approx \frac{1}{2\pi} \left\{ L_2 \left[C_{0,2} + \frac{dC_2}{dp}\bigg|_{p_{0,2}} \cdot (p_2(t) - p_{0,2}) \right] \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \left\{ L_1 \left[C_{0,1} + \frac{dC_1}{dp}\bigg|_{p_{0,1}} \cdot (p_1(t) - p_{0,1}) \right] \right\}^{-\frac{1}{2}} \]
\[\approx \frac{1}{2\pi} \left\{ L_2 \left[C_{0,2} + \frac{dC_2}{dp}\bigg|_{p_{0,2}} \cdot \frac{dp_2}{dt}\bigg|_{t_2} \cdot (t - t_2) \right] \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \left\{ L_1 \left[C_{0,1} + \frac{dC_1}{dp}\bigg|_{p_{0,1}} \cdot \frac{dp_1}{dt}\bigg|_{t_1} \cdot (t - t_1) \right] \right\}^{-\frac{1}{2}} \]
\[= f_{obs} \cdot \left[1 + \frac{1}{C_{0,2}} \frac{dC_2}{dp}\bigg|_{p_{0,2}} \cdot \frac{dp_2}{dt}\bigg|_{t_2} \cdot (t - t_2) \right]^{-\frac{1}{2}} - f_{obs} \cdot \left[1 + \frac{1}{C_{0,1}} \frac{dC_1}{dp}\bigg|_{p_{0,1}} \cdot \frac{dp_1}{dt}\bigg|_{t_1} \cdot (t - t_1) \right]^{-\frac{1}{2}}. \] (18)

It is preferable that both transponders are identical for the triggering condition to be reached at the same pressure and thus obtain a correct value of the pulse transit time. Thus, for the following investigation of the design, it is assumed that \(L_1 = L_2 = L \), \(p_{0,1} = p_{0,2} = p_0 \). \(C_1(p) = C_2(p) = C(p) \) and \(C_{0,1} = C_{0,2} = C_0 \). Equation (18) is then simplified to
\[\Delta f_{res} \approx f_{obs} \cdot \left[1 + \frac{1}{C_0} \frac{dC}{dp}\bigg|_{p_0} \cdot \frac{dp}{dt}\bigg|_{t_2} \cdot (t - t_2) \right]^{-\frac{1}{2}} - f_{obs} \cdot \left[1 + \frac{1}{C_0} \frac{dC}{dp}\bigg|_{p_0} \cdot \frac{dp}{dt}\bigg|_{t_1} \cdot (t - t_1) \right]^{-\frac{1}{2}}. \] (19)

Additionally, it is assumed that the pulse pressure curve does not change when travelling through the stent, which induces that the pressures at both sensors are the same but time shifted by \(\Delta t \):
\[p_2(t) = p_1(t - \Delta t) = p(t - \Delta t). \] (20)

This assumption implies that any wave reflections are neglected, which is a realistic assumption, as the shortest wave length of the spectrum of the pulse wave is usually much longer than the stent. In this case the pulse pressure curves have the same slope at the triggering points:
\[\frac{dp_1}{dt}\bigg|_{t_1} = \frac{dp_2}{dt}\bigg|_{t_2} = \frac{dp}{dt}\bigg|_{t_1}. \] (21)

With (21) and
\[t_2 = t_1 + \Delta t \] (22)

(19) can be transformed further:
\[\Delta f_{res}(t) \approx f_{obs} \cdot \left[1 + \frac{1}{C_0} \frac{dC}{dp}\bigg|_{p_0} \cdot \frac{dp}{dt}\bigg|_{t_1} \cdot (t - t_1 - \Delta t) \right]^{-\frac{1}{2}} - \left[1 + \frac{1}{C_0} \frac{dC}{dp}\bigg|_{p_0} \cdot \frac{dp}{dt}\bigg|_{t_1} \cdot (t - t_1) \right]^{-\frac{1}{2}}. \] (23)

From the derivative of (23) with respect to \(t \) it can be shown that \(\Delta f_{res}(t) \) is monotonically decreasing over \(t \) in the interval \(T_M \), given that \(\frac{dC}{dp} \) is positive. Thus, \(\Delta f_{res,\text{min}} \) is reached at the right border of the interval \(T_M \), when \(t = t_2 = t_1 + \Delta t \). From this follows
\[\Delta f_{res,\text{min}} = \Delta f_{res}(t_1 + \Delta t) \]
\[= f_{obs} \cdot \left[1 - \left[1 + \frac{1}{C_0} \frac{dC}{dp}\bigg|_{p_0} \cdot \frac{dp}{dt}\bigg|_{t_1} \cdot \Delta t \right]^{-\frac{1}{2}} \right]. \] (24)

As the transponders were assumed to be identical \(B_1 = B_2 = B \) applies and the requirement (9) becomes
\[B \leq \Delta f_{res,\text{min}}. \] (25)

The 3 dB bandwidth is related to the quality factor \(Q \) and the resonance frequency \(f_{res} \) as described by the formula
\[Q = \frac{f_{res}}{B}. \] (26)

Solving (24) for \(\Delta t \) leads to a simple expression for the minimal time difference that can be resolved:
\[\Delta t \geq \frac{C_0}{\frac{dc}{dp}\bigg|_{p_0} \frac{dp}{dt}\bigg|_{t_1}} \left[\left(\frac{Q}{Q - 1} \right)^2 - 1 \right] =: \Delta t_{\text{min}}. \] (27)

V. EVALUATION

A. Set-up description

An experimental set-up has been realized to validate the presented model and to show that (27) describes the minimum resolvable time difference for the case of identical transponders as claimed. It has been realized in a way that it represents a realistic scenario but does not require any complex or expensive manufacturing technology. In this set-up, the pressure sensors of the transponders that are to be implanted inside a blood vessel are emulated by varactor diodes. Fig. 5 shows the circuit schematics used for each transponder. \(L_S \) represents the transponder coil coupled to the transceiver coil. It is implemented as a flat coil with the geometry shown in Fig. 6 and a copper thickness of 35 μm integrated into a circuit board. The dimensions have been chosen for a stent...
that has a diameter of 6 mm and a length of 80 mm. These are typical dimensions for peripheral stents [24]. If the coil were manufactured on a flexible substrate and bent around its longitudinal axis to the specified diameter, it would form a saddle coil with its conductors being located on opposite sides of the stent, thus having a large cross section to interact with the transceiver coil field. The four varactor diodes \(D_1 \) to \(D_4 \) emulate the capacitive pressure sensors. A back-to-back configuration has been chosen in order to reduce distortion due to the non-linearity of the voltage / capacitance characteristics. To compensate for the accompanied reduction of capacitance, two diodes have been connected in parallel in each branch. Their capacitance is controlled by a signal generator. The RF signal coupled in from the transceiver coil is blocked from this signal generator by the inductor \(L_B \).

The chosen set-up that represents the readout unit is shown schematically in Fig. 7. A digital lock-in amplifier (Zurich Instruments HF2LI) is used as an RF-signal generator and measures phase and magnitude of the measurement signal in reference to the applied signal. The transceiver coil has been realized as a wire loop with a diameter of 10 cm. A directional coupler (Mini-Circuits ZFDC-10-1B-S+) is inserted between the transceiver coil and the signal output of the lock-in amplifier. It directs the signal reflected at the coil to its couple port, which serves as the measurement signal transferred to the lock-in amplifier’s input.

B. Set-up characterization

The developed transponders have the measured voltage / resonance frequency characteristics shown in Fig. 8. To model the pressure sensors the characteristic curve shown in Fig. 9 is used. It has been derived from the basic model for a MEMS capacitive pressure sensor in [25, p. 299 et seq.] with realistically chosen values given in the Appendix. The inductance \(L \) of a bare transponder coil has been measured by means of an impedance analyzer connected directly to its terminals. Both transponders are intended to trigger at the pressure of \(p_0 = 100 \text{ mmHg} \). This pressure corresponds to a capacitance of \(C_0 = 10.5 \text{ pF} \) and a resonance frequency of \(f_{obs} = 25.37 \text{ MHz} \). The time \(t_1 \) at which \(p_0 \) occurs at sensor 1 at the rising edge of the pulse curve could be obtained from Fig. 2. The quality factor of the transponder coils has been obtained by combining a coil with a fixed capacitor to form a series resonant circuit and measuring its impedance. A model has been fit to the data to estimate the quality factor at resonance, which has been transferred to the measurement frequency \(f_{obs} \). It is assumed that the coil dominates the losses, thus losses in capacitor or varactor diodes can be neglected. Table I summarizes the obtained coil parameters used for evaluation.

By combining the pulse wave signal from Fig. 2, the pressure sensor characteristics from Fig. 9 and the coil parameters
from Table I, the voltage signal that has to be applied to the transponder circuits to emulate the pressure signal is obtained.

To validate the criterion (27), the formula is applied to the experimental set-up. Therefore, the slopes of the pulse wave signal and the sensitivity of the pressure sensor at the trigger pressure have been obtained from the characteristics. Table II summarizes all values used for the calculation of the theoretical minimal transit time. The result is:

\[\Delta t_{\text{min}} = 8.56 \text{ ms}. \quad (28) \]

Table I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>3.76 (\mu)H</td>
<td>At 27 MHz</td>
</tr>
<tr>
<td>Q</td>
<td>79.6</td>
<td>At (f_{\text{obs}}) (see text)</td>
</tr>
</tbody>
</table>

Table II

Parameters used for estimation of minimum transit time

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0)</td>
<td>100 mmHg</td>
<td>Taken from pressure sensor characteristics depicted in Fig. 9</td>
</tr>
<tr>
<td>(C_0)</td>
<td>10.5 pF</td>
<td>Taken from pressure curve depicted in Fig. 2 and 3</td>
</tr>
<tr>
<td>(t_1)</td>
<td>49.5 ms</td>
<td>Obtained from pressure sensor characteristics depicted in Fig. 9</td>
</tr>
<tr>
<td>(dC/dp \mid_{p_0})</td>
<td>54 fF \cdot mmHg(^{-1})</td>
<td>Obtained from pressure sensor characteristics depicted in Fig. 9</td>
</tr>
<tr>
<td>(dy/dt \mid_{t_1})</td>
<td>580 mmHg \cdot s(^{-1})</td>
<td>Obtained from pressure curve depicted in Fig. 2</td>
</tr>
</tbody>
</table>

Table III

Parameters used for measurement

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{obs}})</td>
<td>25.37 MHz</td>
<td>Calculated from (C_0) and (L) using (4)</td>
</tr>
<tr>
<td>(U_0)</td>
<td>1 V</td>
<td>Lock-in amplifier low pass filter order</td>
</tr>
<tr>
<td>(n_{\text{LI}})</td>
<td>8</td>
<td>Lock-in amplifier low pass filter (-3) dB corner frequency</td>
</tr>
<tr>
<td>(f_{\text{c,LI}})</td>
<td>9.6 kHz</td>
<td></td>
</tr>
</tbody>
</table>

The experiment has been executed with the parameters shown in Table III. Three different values for the transit time have been examined, which are spread closely around the calculated limit \(\Delta t_{\text{min}} \):

- \(\Delta t = 7 \) ms (dashed line in the upcoming figures),
- \(\Delta t = 8 \) ms (solid line in the upcoming figures), and
- \(\Delta t = 9 \) ms (dash-dotted line in the upcoming figures).

Fig. 12a shows the virtual pressures applied to the two transponders for the different values.

D. Results

Fig. 12b shows the measured output signal of the lock-in amplifier, which corresponds with the signals \(X \) and \(Y \) in Fig. 7 as follows:

\[
|V_{\text{LI}}| = \sqrt{(X^2 + Y^2)} / 2
\]

\[
\angle V_{\text{LI}} = \tan^{-1}(Y/X).
\]

(29)
The triggering conditions when the pressures cross \(p_t = 100 \, \text{mmHg} \) around 50 ms and 325 ms are clearly visible. However, the individual instants when sensor one and sensor 2 trigger can hardly be distinguished at that scale, so Fig. 13a shows the area near the rising edge of the pressure signal in greater detail. In this figure, the resonances of both transponders are visible both in magnitude and in phase of \(V_{L1} \) as dips in the signal. We would expect that for values of \(\Delta t \) below \(\Delta t_{\text{min}} \) the two dips of the resonances cannot be distinguished. The following was found: For \(\Delta t = 9 \, \text{ms} \) two dips are observed, while for \(\Delta t = 7 \, \text{ms} \) magnitude and phase are monotonically decreasing or increasing in the complete measurement interval. For \(\Delta t = 8 \, \text{ms} \) they almost show a saddle point in between. However, the dips do not occur exactly at the theoretical position of \(t_1 \) and \(t_2 \). This is supposed to be due to some delay in the trigger circuit or offset in the varactor modulation voltages.

For evaluation, the expected output signals have also been calculated from the model. To do this, more parameters had to be determined: inductance and series resistance of the transceiver coil \((L_P, R_P) \) and the mutual inductances (or coupling factors respectively) between the coils \((M_1, M_2, M_3) \). The former values could be measured with an impedance analyzer. The mutual inductances have been iteratively adjusted such that the simulation outcome resembled the measured results as closely as possible, while assuming that the coupling between the transponder coils and the transceiver coil \((M_1 \) and \(M_2) \) are the same due to their symmetric geometrical position related to the transceiver coil axis. Despite shielding, \(k_3 \) can not be assumed to be 0 for a suitable fit. It has been observed that \(M_1 \) and \(M_2 \) affect the depth of both dips, while \(M_3 \) mainly affects the difference of depth between the two dips, which helped in making the adjustment. Therefore, the coupling between transceiver coil and transponder coils does not affect the relative depth of the dips. Table IV shows the final values for the additional parameters needed for simulation. The results for the expected lock-in amplifier output signal have been plotted besides the measured signals in Fig. 13b.

![Graph of pressure and output signal](image)

(a) Pressure at transponder 1 (very left line) and transponder 2 for different values of \(\Delta t \) (very close lines at the right)

(b) Measured output signal of lock-in amplifier for different values of \(\Delta t \)

Fig. 12. Simulated pressure signals and output signal of lock-in amplifier for different values of \(\Delta t \) over full pulse period

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_P)</td>
<td>0.32 (\mu \text{H})</td>
<td>Measured at (f_{\text{obs}})</td>
</tr>
<tr>
<td>(R_P)</td>
<td>0.15 (\Omega)</td>
<td>Measured at (f_{\text{obs}})</td>
</tr>
<tr>
<td>(C)</td>
<td>-10.5 (\text{dB})</td>
<td>Nominal value from data-sheet</td>
</tr>
<tr>
<td>(M_1)</td>
<td>13.2 (\text{mH})</td>
<td>Coupling factor (k_1 = 0.012) (see text)</td>
</tr>
<tr>
<td>(M_2)</td>
<td>13.2 (\text{mH})</td>
<td>Coupling factor (k_2 = 0.012) (see text)</td>
</tr>
<tr>
<td>(M_3)</td>
<td>-18 (\text{mH})</td>
<td>Coupling factor (k_3 = -0.0048) (see text)</td>
</tr>
</tbody>
</table>

The conditions used for simulation match exactly the conditions applied when calculating the minimum transit time. It can be seen that with the adoption of the coupling parameters the qualitative course of the simulated signals resemble the measured signals very well, suggesting that the model structure is suitable. Now the dips of the magnitude also correspond to the theoretical values of \(t_1 \) and \(t_2 \). That there is a large offset in phase between measured and simulated signal is to be expected due to transit delay through the cabling and the phase shift imposed by the coupler: The coupler introduces a phase shift of 180° between its in- and couple-port, while between in- and out-port the phase shift is almost 0°. The cabling between signal output and input of the lock-in amplifier has a total length of 2 m, which adds 91° for the given measurement frequency and a velocity factor of 0.67. The total expected phase shift adds up to 271°, which is close to the observed phase shift between calculated and measured signal in Fig. 13 of about 263°.

The behavior of the system also becomes clear when examining the phenomenon in the frequency domain: Figs. 14a and 14b show the measured and simulated impedance at the transceiver coil obtained under static conditions corresponding to the time when the first sensor is at trigger pressure \((t = t_1; \, p_1 = p_0) \). The second sensor is at the pressure value that corresponds to the time \(t_1 + \Delta t \) for the investigated values of \(\Delta t \). The measured plots have been obtained with an impedance analyzer. Again the phase shows the distinct dips that correspond to the two transponders’ resonance frequencies.
Fig. 13. Zoomed view of output signal of lock-in amplifier for different values of Δt

(a) Measured

(b) Simulated

Fig. 14. Impedance at transceiver coil for $t = t_1$ and different values of Δt

(a) Measured

(b) Simulated

VI. RESULTING IMPLICATIONS ON THE TRANSPONDER DESIGN

The major challenge for the electrical design is to separate the resonances of the transponders such that an appropriate time distance can be resolved. Equation (27) contains information on the design parameters of the transponders that influence this value. They have limits: The transponder quality factor Q cannot be arbitrarily high. It is limited by different kinds of power losses, e.g., due to eddy currents and direct conductor losses. Yet the requirement on Δt (27) reveals other parameters that can be adjusted in order to achieve the design goal. Table V summarizes these and contains the direction in which the parameters relate to the separation of the resonances. The other design parameters are also limited. The PWV cannot be influenced, neither can the derivative of the pulse pressure curve $\frac{dp}{dt}|_{t_1}$. The distance of the sensors d is limited by the length of the stent, which it cannot exceed. The sensitivity of the pressure sensors $\frac{dC}{dp}|_{p_0}$ can be increased by enlarging the membrane (or use several membranes in parallel), which increases the physical size, or by decreasing the membrane thickness, reducing its stability. There is also the option of using a less stiff material. The sensor capacitance at resonance C_0 can most easily be reduced by increasing the separation of the membrane electrodes. This will, at the same time, reduce the sensitivity, so a compromise has to be found. The observation frequency is limited by regulatory requirements, interference with other devices and interaction with body tissue. At high frequencies, the penetration depth of the magnetic field into the body decreases due to the skin effect. On the other hand, with increasing frequency L and C decrease, which allows for smaller dimensions of the transponder. As physical dimensions will be critical for the application, the frequency should be chosen as high as possible within suitable penetration depth. From other investigations it can be concluded that 10 MHz to 30 MHz is a suitable range [26], [27]. It is further proposed to maximize the inductance L of the transponder coils to the geometrical limits. The pressure sensors have to be designed to an appropriate value of S_C given by (27) and the desired value of C_0 given by (12).

VII. DISCUSSION

The measured signals on the experimental set-up are in good agreement with the simulation. The electrical model of the inductive transmission therefore is considered to be valid. Moreover, the signals showed that the characteristic features
TABLE V

PARAMETERS THAT INFLUENCE THE SEPARATION OF THE RESONANCES

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Sense†</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse wave velocity</td>
<td>PWV</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Distance of the sensors</td>
<td>d</td>
<td>+</td>
<td>Limited by stent length</td>
</tr>
<tr>
<td>Derivative of the pulse wave curve at triggering point</td>
<td>(\frac{dp}{dt})</td>
<td>+</td>
<td>None</td>
</tr>
<tr>
<td>Sensitivity of the pressure sensors at triggering point</td>
<td>(\frac{dC}{dp})</td>
<td>+</td>
<td>Limited by membrane size and stability</td>
</tr>
<tr>
<td>Capacitance of the pressure sensors at triggering point</td>
<td>(C_0)</td>
<td>-</td>
<td>Trade-off with sensitivity to be found(^1)</td>
</tr>
<tr>
<td>Transponder inductance</td>
<td>L</td>
<td>+</td>
<td>Limited by geometrical boundaries(^7)</td>
</tr>
<tr>
<td>Observation frequency</td>
<td>(f_{obs})</td>
<td>+</td>
<td>Limited by requirements to temporal resolution, regulatory requirements and interaction with body tissue(^1)</td>
</tr>
<tr>
<td>Transponder quality factor</td>
<td>(Q)</td>
<td>-</td>
<td>Limited by losses</td>
</tr>
</tbody>
</table>

\(^* \): the higher the value, the better the separation; \(^- \): the lower the value, the better the separation.

\(^1 \) \(f_{obs}, C_0 \) and \(L \) cannot be chosen independently. They are dependent as described by (12).

of the measured signal (e.g., local minima in the phase of the reflected signal) disappear, when the transit time falls below the value predicted by the requirement (27).

The experimental set-up has not been optimized for a low resolvable transit time, so the \(\Delta t_{\text{min}} \) reached in the experiment is low for a practical application. Assuming that the maximum PWV we want to measure is \(10 \text{ m} \cdot \text{s}^{-1} \), which is an optimistic yet realistic value, then the distance between the sensors \(d \) must not be lower than 86 mm. For a peripheral stent that is still a reasonable length (see [24]). Nevertheless, the set-up is based on an ideal case: the transmission took place in air, the alignment was symmetric and coupling between the transponders has been reduced by shielding. The surrounding tissue and stent material would affect \(\Delta t_{\text{min}} \) adversely: they cause loss and therefore decrease the quality and the coupling factors. This leads to wider and less expressed ripples and dips in magnitude and phase of the measured signal, both in the frequency and in the time domain. The tissue effect is to a great extent caused by eddy losses in the surrounding tissue, which is conductive. It is dependent on the position of the stent within the body and is patient specific. The conductivity is also a function of time. In order to study the effect of tissue on coupling and quality factors, FEA calculations or experiments with animal tissue are suggested. Once real values for quality and coupling factors are known, the influence can be considered in a practical design. An asymmetry of the alignment would lead to different dip depths for both transponders, as does coupling between the transponders. Placing a shield to decouple the transponder coils is most likely not an option in a real stent. The coils have to be separated spatially (losing available space), or the coupling has to be taken into account in the design. It must also be considered that the slope of the pulse pressure curve can be lower in practice, especially in pathological cases. The presented model allows to study the effect of such variations.

To optimize the proposed measurement system further, micro manufacturing methods should be taken into consideration. They are necessary to realize a coil that fits into a coronary stent while achieving sufficient inductance. Pressure sensors with very high sensitivity, e.g., with polymer based diaphragms, could be necessary.

Apart from optimization, future work comprises the definition of a strategy to obtain the trigger instances from the measurement signal. One suggested approach is to search for minima of the phase of the lock-in amplifier signal, e.g., by searching for zeros in its derivative.

The influence of signal noise is also an important subject for further investigations. Noise determines the lower limit of the coupling factor up to which the resonances can be detected before they vanish in the noise floor. Furthermore, it introduces a statistical error on the measured transit time and therefore influences the precision of the measurement. An approach to take this into account is to model the noise as Gaussian distributed and band limited to the lock-in amplifier’s filter bandwidth. Once the approach for resonance detection is defined, the influence of such noise on the determined pulse transit time can be studied mathematically.

The integration of the transponders into the stent is another research subject. The approach published by Takahata et al., which also makes use of the stent structure as an antenna, is appealing [9]. An alternative is to integrate coil and sensor on a flexible polyimide substrate which is wrapped around the stent [28]. With this approach it has to be considered that the bending curvature of the coil will change its characteristics. The effective cross-section is reduced, which reduces coupling and inductance. The equivalent series resistance is also expected to change slightly due to proximity effect. Further challenges are that the transponders may not disturb blood flow and they must both survive and not obstruct the implantation process, during which the stent is compressed to a diameter much less than in its expanded state.

Medical questions are other subjects to further investigations. They include how fast the pulse wave will actually be in a blood vessel stiffened by a stent and how the sensors will be covered with biological material. If both sensors are asymmetrically covered with cells, their sensitivity differs, which leads to a change in the apparent transit time. The proposed sensor system provides a value for the mean PWV inside the stent. It is not designed to differentiate between different shapes of restenosis\(^6 \).

The advantage of the proposed PWV-based method compared to pressure-based methods is revealed when considering a decrease in pressure sensor sensitivity due to coverage of the sensors. It has two effects: An increase in triggering pressure and a change in slope at the triggering condition. As long as the sensors are affected identically and the pulse

\(^6 \) E.g., focal, diffuse, proliferative as defined in [29]
wave does not change its form between the sensors, a slight change in trigger frequency is compensated as the triggering times are subtracted. For a substantial change in sensitivity the observation frequency can be adapted, so that it is still crossed by the resonance frequencies. Therefore, the PWV-based concept is robust to sensitivity changes as long they affect both sensors identically. However, the decrease in slope increases the minimum resolvable transit time. If a range for the slope change can be quantified, it may be considered in the design.

VIII. CONCLUSION

This investigation aimed to determine the electronic design criteria for an implantable PWV measurement system based on resonance detection on LC-transponders. The model and the requirements obtained in this article deliver a starting point for resonance detection on LC-transponders. The model and the criteria for an implantable PWV measurement system based on peaks may not overlap (9), a design criterion on the minimal times are subtracted. For a substantial change in sensitivity the observation frequency can be adjusted, so that it is still crossed by the resonance frequencies.

Given that the bandwidths of the transponders’ resonance peaks may not overlap (9), a design criterion on the minimal transit time. If a range for the slope change can be quantified, it may be considered in the design.

APPENDIX
CAPACITIVE PRESSURE SENSOR MODEL

The model for the capacitive pressure sensors used in the evaluation has been found in [25, p. 299 et seq.]. In addition, to increase sensitivity, N sensor structures have been virtually connected in parallel. The parameters in Table VI have been used.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane radius</td>
<td>r_a</td>
<td>120 μm</td>
</tr>
<tr>
<td>Membrane thickness</td>
<td>h</td>
<td>2 μm</td>
</tr>
<tr>
<td>Young’s modulus of membrane</td>
<td>Y</td>
<td>150 GPa</td>
</tr>
<tr>
<td>Poisson ratio of membrane</td>
<td>ν</td>
<td>0.15</td>
</tr>
<tr>
<td>Distance of the electrodes</td>
<td>d</td>
<td>0.7 μm</td>
</tr>
<tr>
<td>Counter electrode diameter</td>
<td>αr</td>
<td>108 μm</td>
</tr>
<tr>
<td>Reference pressure</td>
<td>p₀</td>
<td>1013.25 hPa</td>
</tr>
<tr>
<td>Number of sensors in parallel</td>
<td>N</td>
<td>16</td>
</tr>
</tbody>
</table>

The capacitance is obtained from

\[C(u_0) = N \int_0^\infty \frac{2\pi r}{d - u_0 \left(1 - \frac{r}{r_a}\right)^2} dr \]

with

\[u_0 = \frac{r_a^4}{64D} (p - p_0) \]

\[D = \frac{Yh^3}{12(1 - \nu^2)} \].

ACKNOWLEDGEMENT

The author would like to thank A. Domnich, V. Schrader, A. van Poelgeest and J. Stallkamp for their support.

REFERENCES

[3] T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. N decided on the minimal transit time (27) has been derived for the preferable case that both transponders are equal. The qualitative and quantitative similarity between measured and simulated results and the fact that in simulation the signals show the expected behavior suggest that the requirement on the transit time (27) yields suitable results for this measurement task. If it is fulfilled, the signal measured by the lock-in amplifier would, with some signal processing (e.g. calculation of its derivative), yield a proper triggering signal to measure the pulse transit time and, with known distance of the sensors, PWV.

\[(30) \]

\[(31) \]

\[(32) \]

Jonathan Schächtele studied mechatronics at the Friedrich-Alexander Universität Erlangen-Nürnberg, Germany, where he received his Dipl.-Ing. degree with distinction in 2009. Since then, he has been working as a research assistant at the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA). From 2009 to 2012 he was with the department for Production and Process Automation in Stuttgart, Germany. In 2012 he switched to the newly founded Project Group for Automation in Medicine and Biotechnology in Mannheim, Germany, where he is a project manager within the research group Control Systems in Medical Engineering. His focus is on micro sensor and actuator systems for active implantable devices and surgical instruments.