
IP Based SoC Design 2002 - October 30-31, 2002 1

Abstract :

The paper describes an environment for an Internet-
based co-operation in the field of design and test of
digital systems. A VLSI design flow is combined
with an Internet-based hierarchical automated test
pattern generation (ATPG). A novel hierarchical
ATPG driven by testability measures is presented.
Both, the register-transfer (RT) and the gate level
descriptions are used, and decision diagrams are
exploited as a uniform model for describing
systems at both levels, for calculating testability
measures and for test generation. The ATPG and
testability analyzer can be run at geographically
different places under the virtual environment
MOSCITO. The interfaces between the integrated
tools and also the commercial design tools were
developed and implemented. The functionality of
the integrated design and test system was verified
in several co-operative experiments over Internet
by partners in different geographical sites. The
experimental results have shown the advantages of
using structural tests generated by ATPG compared
to using functional test sequences created by
designers.

1 INTRODUCTION

In the field of digital design, the system-on-chip
(SoC) technology is becoming state-of-the-art. In
order to come up with innovative electronic
systems in time and with competitive cost, a lot of
EDA problems should be solved: HW/SW
codesign, high-level synthesis, testability
evaluation, test pattern generation. Usually, not all
the needed EDA tools are available for a designer
in his working site.
The Internet opens a new dimension, and offers
new chances using tools from different sources.
The basic idea of this paper aimes at exploiting an

Internet-based tool integration. For that purpose, a
novel and very efficient testability driven ATPG
tool was successfully integrated into the new virtual
environment MOSCITO [1] to implement a
Internet-based cooperative design environment.
The paper is organized as follows: The MOSCITO
system is specified in Section 2. The description of
the new approach to testability calculation is given
in Section 3. The testability driven ATPG is
presented in Section 4, and experimental results
obtained by the use of the MOSCITO environment
are shown in Section 5.

2 MOSCITO

The software developed at IIS/EAS offers a Client-
Server concept. There is one Master Server, several
Slave servers and arbitrary number of clients. The
requested service is provided by Slave servers. So-
called Agents are attached to each Slave server.
The Agents encapsulate service providing program
executables. The communication is based on
TCP/IP-sockets. The main emphasis of the tool
integration was put on the following aspects:
� Encapsulation of design tools and adaptation of

the tool-specific control and data input/output
to the MOSCITO framework

� Communication between tools, data exchange
to support distributed, Internet-based work

� Graphical user interface to configure the tools,
control the workflow and visualize result data

An important goal is to provide the functionality of
a tool to a potential user as a service in LAN or
WAN. This approach is similar to the Application
Service Provider (ASP) idea or the recent approach
of Web Services. The following tools have been
integrated in MOSCITO:
� High-level synthesis (1) with RTL output [2]
� Interface from RTL VHDL (4) to ATPG

 IP Based Design 2002

Session :

INTERNET–BASED TESTABILITY DRIVEN TEST GENERATION IN VIRTUAL
ENVIRONMENT MOSCITO

A. Schneider, K.-H. Diener, G.Elst

Fraunhofer Institute for Integrated Circuits (IIS/EAS)
Dresden Germany

E.Ivask, J.Raik, R.Ubar, Tallinn Technical University

Tallinn Estonia

IP Based SoC Design 2002 - October 30-31, 2002 2

� Interfaces from EDIF (5) and ISCAS (6)
formats to ATPGs and fault simulators

� Hierarchical ATPG (7) DECIDER [3]
� Logic level ATPG (8) Turbo-Tester [4].

The listed tools can act as MOSCITO agents
and each of them supply a demanded service. The
user can combine all the services to a problem-
specific workflow. The needed tools have not to be
installed on the users local computer. User’s effort
for installation, configuration and maintenance of
software will be drastically reduced.
The MOSCITO was implemented in JAVA and can
run on different computing platforms. The only
prerequisite is an installed Java Virtual Machine. At
the moment MOSCITO is used on SUN
workstations (Solaris) and on PCs (Microsoft
Windows and LINUX). MOSCITO consists of

three software layers: kernel layer, interface layer,
extensions. The kernel provides the functionality
for basic object and data management, file
handling, XML processing, and communication.
Since MOSCITO is an open system, a special
interface layer offers programming interfaces for
integration of new tools, new workflows and
appropriate viewers such as for diagrams, plain text
and images. Each interface is represented by a Java
class which contains the basic functionality. The
user only has to extend this class and can
implement its own extension. A large number of
templates and example implementations helps the
user to integrate a new tool or workflow in less
than few days.

Fig. 1. Integrated tool environment

2.1 TOOL ENCAPSULATION

The Agent interface was introduced to integrate
different tools with MOSCITO. The embedding of
a tool into a MOSCITO agent allows:
� adapting the input data to the embedded tool,
� converting the tool-specific data (simulation

results, logfiles, test vectors),
� passing the control information to the tool, to

transfer and convert the status information to
be submitted to the user.

The embedding is possible in three ways:
� Integrating the entire program: it has to be

capable running as a batch job. Integration of
many commercial tools is possible that way

� Embedding a library (e.g. C, C++ routines) via
Java Native Interface (JNI)

� Direct integration of Java classes and
applications; in particular for JAVA software.

The encapsulation of the tools as a MOSCITO
agent guarantees a uniform interface to the
framework. All tool-specific details are aggregated

in a special agent description file to create tool-
specific configuration dialogs in user GUI. To
minimize the implementation effort for parsers,
translators and converters, a special XML format-
the Moscito Markup Language is used for all
transmitted data.

2.4 GRAPHICAL USER INTERFACE

� The problem description, including all data can
be read in from a MOSCITO project file.

� Workflows can be chosen from a set of
predefined flows for the specific problem.

� A browser supports the choice of agents (tools)
needed for the solution of the problem from the
set of available services.

� With buttons for start, pause, resume and stop
the workflow can be controlled by the user.

� The visualization module displays all the result
data (test vectors, statistic information).

Behavioral level

VHDL description

High-level

RTL VHDL
description

High-level DD
model

Test patterns exchange interface Functional test

Logic
synthesis

Gate-level
EDIF

EDIF-SSBDD
converter

SSBDD model

High-level
VHDL description

Turbo Tester

1 2

5

Hierarchical
ATPG

7 8

4 VHDL-DD
converter

EDIF-ISCAS
converter (TTU)

6

 Synthesis

ISCAS netlist

ISCAS
benchmarks

University
software

9

Schematic
entry

3

Commercial
or in-house

CAD software

MOSCITO
USER

IP Based SoC Design 2002 - October 30-31, 2002 3

� A console window collects all messages from
the running tools and allows the observation of
the proper operation or trouble shooting

The front-end is a JAVA application and has to be
installed together with the MOSCITO software.

2.6 INTERNET-BASED USAGE

At first, it is necessary to start one MOSCITO
server on each host belonging to a domain of
services. After that an administrator has to register
one or more MOSCITO agents so that they are
available as remote services via LAN or Internet.
Now a user can start the MOSCITO front-end
program (GUI) and can browse through registered
agents, can select, configure, and initialize the
appropriated workflow and the needed agents. The
MOSCITO system automatically calls remote tools
and establishes direct connections between the tools
for data transfer. Furthermore, the GUI allows the
user to control and observe the data processing pro-
vided by a certain workflow. Result data are
transmitted to the front-end and displayed by
appropriate viewers. Finally MOSCITO closes the
connections between all remote tools and organizes
correct termination of them.

2.7 FIREWALL TRAVERSAL

A firewall can be regarded as filter which allows
certain type of communication (e.g. TCP/IP
protocol based) “go through” configurable chock
points (called ports)[13]. A firewall is implemented
for example as a specialized software running on a
well secured computer. The Internet and intranet
are accessible only via that computer. Opening a
port in a firewall means just configuring filter
rules. In a case of restrictive firewall there are only
few ports left open for incoming internet
connections (like port 80 for http web server). In

order to comply with firewall requirements, the
major MOSCITO communication schema was
modified. Since firewall disables direct connections
between subcomponents, all the communication has
to be organized through predetermined
communication ports. Random port numbers are
not allowed. Simplified communication schema in
a firewall protected environment is shown in Fig. 2

Fig. 3. Communication between Client and
Agents via proxy

To solve the firewall traversal problem a
MOSCITO proxy is to implement as Java
application (Fig.3). Here, again MOSCITO socket
based communicationis is used.
 Proxy mechanism enables hosts in one side of
proxy server to gain full access to hosts in the other
side of the proxy server without requiring direct IP
reachability. It works by redirecting connection
requests from hosts in one side to hosts in the other
side to a proxy server that authenticates and
authorizes the requests, establishes a proxy
connection and passes data back and forth.

Client
GUI

intrane

Firewall

Prox

intrane

Firewall

Prox

Agent Agent

 Slave
 Server

 Slave
 Server intran

 Firewall

Internet

 Slave
 Server

intran

 Firewall
 Client
 GUI

intran

 Firewall

intran

 Master
 Server

Firewall

Agent Agent

Agent Agent

Fig. 2. Communication between firewall protected MOSCITO subsystems: connections
are allowed only between dedicated communication ports

IP Based SoC Design 2002 - October 30-31, 2002 4

2.8 TOOL ENVIRONMENT

An experimental tool environment for design and
test pattern generation (Fig.1) was developed and
mapped to a MOSCITO workflow. In the following
the functionality of the tools will be explained in
detail.
Design information can be generated in different
ways, by VHDL files to be processed by
commercial or experimental high-level or logic
synthesis systems, or provided manually by
schematic editors. The gate-level design is pre-
sented in the EDIF format. In university research
practice, ISCAS benchmark families with a
dedicated ISCAS format are widely used. For
linking test generation and fault simulation tools
with all the needed formats, different translators
and interfaces were developed (Blocks 4,5,6 in
Fig.1). The interfaces make possible to design a
circuit in one geographical site, generate test
patterns in another site, and to analyze the quality
of patterns in a third site.

3 TESTABILITY DRIVEN TEST GENERATION

The test generation requires two basic steps:
excitation of the fault, and propagation of
erroneous values to primary outputs. Both steps
might involve backtracking. Controllability and
observability measures can be used to reduce the
number of backtracks. A lot of methods have been
proposed for determining testability measures [5].
The first ideas of measuring testability in gate-level
circuits [6] have been extended also to digital
systems [7]. The known testability calculation
methods use different approaches for gate- and RT
levels. Basically, the well-known methods are not
easily usable because for each component its own
formula of testability calculation has to be given. In
the present approach Decision Diagrams (DD) [8]
are exploited for both, the gate level and the RT
level testability calculation. The same models and
similar path tracing procedures utilized as for test
generation, and no particular libraries are needed
for testability calculation.

3.2 RT LEVEL DECISION DIAGRAMS (DDs)

In general case of RT level DDs the values of
variables at nonterminal nodes (and functional
expressions at terminal nodes are not binary.
 Fig.4 presents an example of a word-level DD
for a control part of a simple control part of a
digital system.

3,4

0 2

q

1

0 1

0
q ′ # 1

4 x A

2

1
5 x B
3

Fig. 4. RT level DD for a control part

 The variables of the DD have the following
meaning: q denotes the next sate, q’ indicates the
current state, xA and xB identify input signals, and
the constants in terminal nodes labelthe next state
value. Tracing the path activated by given values of
q’, xA and xB we reach a terminal node which gives
us the next state value.
 An example of a register-level data-path and of
his compressed DD is depicted in Fig.5. The DD in
Fig.5 is the superposition of the components’ DDs
of the given data path.

3.3 CONTROLLABILITY FOR RT LEVEL DDs

For controlling a given working mode of the
system, the control variables have to be assigned
specific values. Controllability C(y=k) of a
multivalued control signal y in a digital system to a
specific value k can be regarded as the probability
P(y=k) that y will take the value k. The computation
of P(y=k) is based on traversing paths in the DD for
y and using the formula:
 P(y=k) = Σ Π P(x=e) (1)
 Li∈L(k) x∈Xi
where e is the value of the variable x needed for
activating the path Li∈L(k) and L(k) is the set of all
possible paths which enters into the terminal node
with constant value k.

As an example, we calculate the controllability
of P(q=5) for DD in Fig.4 as follows:

P(q=5) = P(q=2) P(xB=0) + P(q=3) + P(q=4).

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

IP Based SoC Design 2002 - October 30-31, 2002 5

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

Fig. 5. RT level DD for a data part

For data variables (buses, registers) in

hierarchical test generation we usually have to
assign them symbolic values along some activated
paths either from inputs of the system or from
easily controlled internal points (like scan-path
registers). For that case we need to calculate the
controllabilities for creating such activated paths.
Controllability C(R) of a data word R in a digital
system can be regarded as the probability P(R=IN)
that R can directly be loadable from a given control
point IN. The computation of P(R=IN) is based on
traversing paths in the DD and using the formula:
 P(R=IN) = Σ Π P(x=e) (2)
 Li∈L(IN,R) x∈Xi

where Li∈L(IN,R) is the set of all possible paths to
control the value of R from the control point IN.

As an example, we calculate the controllability
of P(R2=IN) in GR2 in Fig.5 as follows:

P(R2=IN) = P(y4=2) P(y3=1).

3.4 OBSERVABILITY FOR RT LEVEL DDs

For terminal nodes mT in a DD we define the
observability O(z(mT)) of the functional expression
z(mT)) as the probability P(y=z(mT)) that y will have
the value equal to z(mT). The computation of
P(y=z(mT)) is based on traversing paths in the DD
Gy and using the formula:
 P(y=z(mT)) = Σ Π P(x=e) (3)
 Li∈L(m0,mT) x∈Xi

where Li∈L(m0,mT) is the set of all possible paths
from the initial node m0 of the graph to the terminal
node mT. To highlight the procedure, we calculate
the observability of P(R2= R1+ R2) in GR2 in Fig.5
as follows:

P(R2= R1∗ R2) = P(y4=2) P(y3=3) P(y2=0).

3.5 HIERARCHICAL ATPG (block7 in Fig.1)
uses a top-down approach, with a novel meth-
od of combining random and deterministic
techniques. Tests are generated for each
functional unit (FU) of the system separately.
First, a high-level symbolic test frame (test

plan) is created for testing the given FU by
deterministic search. The search is guided by
the testability measures calculated by a
testability analyzer. As the result of the search
process, a symbolic path (a test frame) for
propagating faults through the network of
components is activated and corresponding
constraints are extracted. The test frame will
adopt the role of a filter between the random

The TPG and the FU find a random test with 100%
fault coverage for the component under test,
another test frame will be chosen or generated in
addition to the previously created ones. In such a
way, the following main parts in the ATPG are
used alternatively: deterministic high-level test
frame generator, random low-level test generator,
high-level simulator for transporting random

 Fig.6. A set of low-level ATPG tools Turbo-
Tester

 patterns to the component under test and low-level
fault simulator for estimating the quality of random
patterns. The mentioned low-level tools belong to
Turbo Tester software package in Fig.6 (also
block 8 in Fig.1).

Table 1. Exp. results for hierarchical ATPGs

4 EXPERIMENTS

 The MOSCITO based environment has been
utilized for research purposes. The performance of
the hierarchical ATPG (3) was compared against
the existing university tools GATEST [10] and
HITEC [11]. For that the translator 6 was
necessary. The results of comparison of different
ATPGs are given in Table 1. Actual stuck-at fault
coverages of the test patterns generated by all the

DECIDER GATEST HITEC
Fault
cover

%

Time
s

Fault
cover

%

Time
s

Fault
cover

%

Time
s

GCD 91.0 3.4 92.2 89.8 89.3 195.6
Mult
8x8 79.4 13.6 77.3 1585 63.5 1793

Diffe
g

95.8 15.8 96.0 9720 95.1 N.A.

Test
Generation

BIST
Simulation

Methods:
Deterministic
Random
Genetic

Methods:
BILBO
CSTP
Store/Generate

Design Test

Levels:
Gate
Macro

Fault
Simulation

Methods:
Single fault
Parallel
Deductive

Fault
Table

Fault models:
Stuck-at-faults
Stuck-opens
Delay faults

Test
Optimization

Fault
Diagnosis

Fault
Location

IP Based SoC Design 2002 - October 30-31, 2002 6

Table 2. Evaluation of testability measures in RTL test generation using DECIDER

three tools were measured by the same fault
simulator. The Table 2 compares two different
testability approaches: this one proposed in this
paper with average result of random testability
measures and the worst testability ordering known
to us. The column ‘# of high level tests’ shows the
total number of high-level tests set up by the
ATPG. Columns ‘# tested’ show the number of
these tests passed by DECIDER. Columns
‘coverage’ show the percentage of the RTL tests
passed. Note, that this is not the actual gate-level
stuck-at fault coverage but rather an RT-level
assessment. However, as our experience and
previous research [10, 11] have shown, this number
is very close to the gate-level fault coverage. As it
can be seen from the Table 2, average test coverage
for the benchmark set is 60 %. However, if
inconvenient node ranking is used this number can
drop as low as 40 %. The experiments showed,
however, that the method published in [7] can
increase the test coverage to 70 %, while the one
proposed in this paper raises the coverage to
roughly 80 %.

6 CONCLUSIONS
In the paper an Internet-based test environment
supported by MOSCITO system [13] is presented.
The environment is focussed on providing high-
level and logic level design flows with testability
analysis, test pattern generation and fault simulation
at register-transfer and gate level operational
activities. The main effort was put on linking
together test generators and fault simulators with
varying functionalities available at geographically
different sites. A novel approach of testability
driven hierarchical test generation was developed
and experimented. Differently from known ATPGs,
the testability measures calculated at RT level were
used for guiding high-level path activation search.
The system provides interfaces and links to com-
mercial design environments and also to other
university tools. The functionality of the integrated
design and test system was verified by several
benchmark circuits and by different design and test
flows. Furthermore, authors believe that the
MOSCITO architecture is powerful enough to
solve similar problems in other application areas of
automated system design. Future work will

continue in this direction.

REFERENCES
[1] A.Schneider et. al Internet-based Collaborative

Test Generation with MOSCITO. Proc. of
DATE’02, Paris, France, March 4-8, 2002, pp.221-
226.

[2] G.Jervan, P.Eles, Z.Peng, J.Raik, R.Ubar. High-
Level Test Synthesis with Hierarchical Test
Generation. 17th NORCHIP Conf., Oslo, Nov. 8-9,
1999, pp.291-296.

[3] J.Raik, R.Ubar: Fast Test Pattern Generation for
Sequential Circuits Using DD Representations. J.
of Electronic Testing: Theory and Applications.
Kluwer Publ. Vol. 16, No. 3, pp. 213-226, 2000.

[4] J.Raik, R. Ubar: Feasibility of Structurally
Synthesized BDD Models for Test Generation.
Proc. of the ETW, Barcelona 1998, pp.145-146.

[5] M.L.Bushnell, V.D.Agrawal. Essentials of
Electronic Testing. Kluwer Acad. Publ., 2000.

[6] Goldstein L.HControllability/observabili analysis
of digital circuits. IEEE Trans. Circuit. Syst.,
CAS-26, No.9, 1979, pp. 685-693.

[7] Gu X., Kuchcinski K., Peng Z. Testability Analysis
and Improvement from VHDL Behavioral
Specifications. EURO-DAC, 1994.

[8] Ubar R. Test Synthesis with alternative graphs.
IEEE Design & Test of Computers. Spring 1996,
pp.48-57.

[9] Ubar R. Multi-Valued Simulation of Digital
Circuits with Structurally Synthesized BDDs. OPA
N.V. Gordon & Breach Publ, Multiple Valued
Logic, Vol.4, pp. 141-157, 1998.

[10] E.M.Rudnick et. al Sequential Circuit Test
Generation in a Genetic Algorithm framework.
DAC., pp. 698-704, 1994.

[11] M.Niermann, J.H.Patel: HITEC: A Test Generation
Package for Sequential Circuits. European Conf.
Design Aut., pp. 214-218, 1991.

[12] M. L. Flottes, R. Pires, B. Rouzeyre, "Analyzing
Testability from Behavioral to RT Level", Proc.
ED&TC, pp.159-165, 1997.

[13] http://www.eas.iis.fhg.de/solutions/moscito

worst known average random HLS metrics [7] current approach circuit # of high-
level tests # tested coverage # tested coverage # tested coverage # tested coverage

gcd 19 10 52.6 % 11.5 60.5 % 19 100.0 % 18 94.7 %
mult8x8 20 3 15.0 % 10.1 50.5 % 15 75.0 % 15 75.0 %
diffeq 45 13 28.9 % 23,7 52.7 % 13 28.9 % 28 62.2 %
risc_32 97 57 58.8 % 71.4 73.6 % 75 77.3 % 92 94.8 %
average test coverage: 38.83 % 59.33 % 70.30 % 81.62 %

