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Abstract : 
 
The paper describes an environment for an Internet-
based co-operation in the field of design and test of 
digital systems. A VLSI design flow is combined 
with an Internet-based hierarchical automated test 
pattern generation (ATPG). A novel hierarchical 
ATPG driven by testability measures is presented. 
Both, the register-transfer (RT) and the gate level 
descriptions are used, and decision diagrams are 
exploited as a uniform model for describing 
systems at both levels, for calculating testability 
measures and for test generation. The ATPG and 
testability analyzer can be run at geographically 
different places under the virtual environment 
MOSCITO. The interfaces between the integrated 
tools and also the commercial design tools were 
developed and implemented. The functionality of 
the integrated design and test system was verified 
in several co-operative experiments over Internet 
by partners in different geographical sites. The 
experimental results have shown the advantages of 
using structural tests generated by ATPG compared 
to using functional test sequences created by 
designers. 
 
1 INTRODUCTION 

In the field of digital design, the system-on-chip 
(SoC) technology is becoming state-of-the-art. In 
order to come up with innovative electronic 
systems in time and with competitive cost, a lot of 
EDA problems should be solved: HW/SW 
codesign, high-level synthesis, testability 
evaluation, test pattern generation. Usually, not all 
the needed EDA tools are available for a designer 
in his working site. 
The Internet opens a new dimension, and offers 
new chances using tools from different sources. 
The basic idea of this paper aimes at exploiting an 

Internet-based tool integration. For that purpose, a 
novel and very efficient testability driven ATPG 
tool was successfully integrated into the new virtual 
environment MOSCITO [1] to implement a 
Internet-based cooperative design environment.  
The paper is organized as follows: The MOSCITO 
system is specified in Section 2. The description of 
the new approach to testability calculation is given 
in Section 3. The testability driven ATPG is 
presented in Section 4, and experimental results 
obtained by the use of the MOSCITO environment 
are shown in Section 5. 
  
2 MOSCITO 

The software developed at IIS/EAS offers a Client-
Server concept. There is one Master Server, several 
Slave servers and arbitrary number of clients. The 
requested service is provided by Slave servers. So-
called Agents are attached to each Slave server. 
The Agents encapsulate service providing program 
executables. The communication is based on 
TCP/IP-sockets. The main emphasis of the tool 
integration was put on the following aspects: 
� Encapsulation of design tools and adaptation of 

the tool-specific control and data input/output 
to the MOSCITO framework  

� Communication between tools, data exchange 
to support distributed, Internet-based work 

� Graphical user interface to configure the tools, 
control the workflow and visualize result data 

An important goal is to provide the functionality of 
a tool to a potential user as a service in LAN or 
WAN. This approach is similar to the Application 
Service Provider (ASP) idea or the recent approach 
of Web Services.  The following tools have been 
integrated in MOSCITO: 
� High-level synthesis (1) with RTL output [2] 
� Interface from RTL VHDL (4) to ATPG 

 IP Based Design 2002 
 

Session :   ................................. 
 

INTERNET–BASED TESTABILITY DRIVEN TEST GENERATION IN VIRTUAL 
ENVIRONMENT MOSCITO 

 
A. Schneider, K.-H. Diener, G.Elst 

Fraunhofer Institute for Integrated Circuits (IIS/EAS) 
Dresden Germany 

 
E.Ivask, J.Raik, R.Ubar, Tallinn Technical University 

Tallinn Estonia 
  



IP Based SoC Design 2002 - October 30-31, 2002 2

� Interfaces from EDIF (5) and ISCAS (6) 
formats to ATPGs and fault simulators 

� Hierarchical ATPG (7) DECIDER [3] 
� Logic level ATPG (8) Turbo-Tester [4]. 

The listed tools can act as MOSCITO agents 
and each of them supply a demanded service. The 
user can combine all the services to a problem-
specific workflow. The needed tools have not to be 
installed on the users local computer. User’s effort 
for installation, configuration and maintenance of 
software will be drastically reduced.  
The MOSCITO was implemented in JAVA and can 
run on different computing platforms. The only 
prerequisite is an installed Java Virtual Machine. At 
the moment MOSCITO is used on SUN 
workstations (Solaris) and on PCs (Microsoft  
Windows and LINUX). MOSCITO consists of 

three software layers: kernel layer, interface layer, 
extensions. The kernel provides the functionality 
for basic object and data management, file 
handling, XML processing, and communication. 
Since MOSCITO is an open system, a special 
interface layer offers programming interfaces for 
integration of new tools, new workflows and 
appropriate viewers such as for diagrams, plain text 
and images. Each interface is represented by a Java 
class which contains the basic functionality. The 
user only has to extend this class and can 
implement its own extension. A large number of 
templates and example implementations helps the 
user to integrate a new tool or workflow in less  
than few days. 

Fig. 1. Integrated tool environment  
 
2.1 TOOL ENCAPSULATION 

The Agent interface was introduced to integrate 
different tools with MOSCITO. The embedding of 
a tool  into a MOSCITO agent allows: 
� adapting the input data to the embedded tool, 
� converting the tool-specific data (simulation 

results, logfiles, test vectors), 
� passing the control information to the tool, to 

transfer and convert the status information to 
be submitted to the user. 

The embedding  is possible in three ways: 
� Integrating the entire program: it has to be 

capable running as a batch job. Integration of 
many commercial tools is possible that way 

� Embedding a library (e.g. C, C++  routines) via 
Java Native Interface (JNI) 

� Direct integration of Java classes and 
applications; in particular for JAVA software. 

The encapsulation of the tools as a MOSCITO 
agent guarantees a uniform interface to the 
framework. All tool-specific details are aggregated 

in a special agent description file to create tool-
specific configuration dialogs in user GUI. To 
minimize the implementation effort for parsers, 
translators and converters, a special XML format- 
the Moscito Markup Language is used for all 
transmitted data.  

2.4 GRAPHICAL USER INTERFACE  

� The problem description, including all data can 
be read in from a MOSCITO project file. 

� Workflows can be chosen from a set of 
predefined flows for the specific problem. 

� A browser supports the choice of agents (tools) 
needed for the solution of the problem from the 
set of available services. 

� With buttons for start, pause, resume and stop 
the workflow can be controlled by the user. 

� The visualization module displays all the result 
data (test vectors, statistic information). 
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� A console window collects all messages from 
the running tools and allows the observation of 
the proper operation or trouble shooting 

The front-end is a JAVA application and has to be 
installed together with the MOSCITO software. 

2.6 INTERNET-BASED USAGE 

At first, it is necessary to start one MOSCITO 
server on each host belonging to a domain of 
services. After that an administrator has to register 
one or more MOSCITO agents so that they are 
available as remote services via LAN or Internet. 
Now a user can start the MOSCITO front-end 
program (GUI) and can browse through registered 
agents, can select, configure, and initialize the 
appropriated workflow and the needed agents. The 
MOSCITO system automatically calls remote tools 
and establishes direct connections between the tools 
for data transfer. Furthermore, the GUI allows the 
user to control and observe the data processing pro-
vided by a certain workflow. Result data are 
transmitted to the front-end and displayed by 
appropriate viewers. Finally MOSCITO closes the 
connections between all remote tools and organizes 
correct termination of them. 

2.7  FIREWALL TRAVERSAL 

A firewall can be regarded as filter which allows 
certain type of  communication (e.g. TCP/IP 
protocol based) “go through” configurable chock 
points (called ports)[13]. A firewall is implemented 
for example as a specialized software running on a 
well secured computer. The Internet and intranet 
are accessible only via that computer. Opening a 
port in a firewall means just configuring  filter 
rules. In a case of restrictive firewall there are only 
few ports left open for incoming internet 
connections (like port 80 for http web server). In 

order to comply with firewall requirements, the 
major MOSCITO communication schema was 
modified. Since firewall disables direct connections 
between subcomponents, all the communication has 
to be organized through predetermined 
communication ports. Random  port numbers are 
not allowed. Simplified communication schema  in 
a firewall protected environment is shown in Fig. 2  

Fig. 3. Communication between Client and 
Agents via proxy 

To solve the firewall traversal problem a 
MOSCITO proxy is to implement as  Java  
application (Fig.3). Here, again MOSCITO socket 
based communicationis is used.  
      Proxy mechanism enables hosts in one side of 
proxy server to gain full access to hosts in the other 
side of the proxy server without requiring direct IP 
reachability. It works by redirecting connection 
requests from hosts in one side to hosts in the other 
side to a proxy server that authenticates and 
authorizes the requests, establishes a proxy 
connection and passes data back and forth. 
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2.8 TOOL ENVIRONMENT 

An experimental tool environment for design and 
test pattern generation (Fig.1) was developed and 
mapped to a MOSCITO workflow. In the following 
the functionality of the tools will be explained in 
detail. 
Design information can be generated in different 
ways, by VHDL files to be processed by 
commercial or experimental high-level or logic 
synthesis systems, or provided manually by 
schematic editors. The gate-level design is pre-
sented in the EDIF format. In university research 
practice, ISCAS benchmark families with a 
dedicated ISCAS format are widely used. For 
linking test generation and fault simulation tools 
with all the needed formats, different translators 
and interfaces were developed (Blocks 4,5,6 in 
Fig.1). The interfaces make possible to design a 
circuit in one geographical site, generate test 
patterns in another site, and to analyze the quality 
of patterns in a third site.  

3 TESTABILITY DRIVEN TEST GENERATION  

The test generation requires two basic steps: 
excitation of the fault, and propagation of 
erroneous values to primary outputs. Both steps 
might involve backtracking. Controllability and 
observability measures can be used to reduce the 
number of backtracks. A lot of methods have been 
proposed for determining testability measures [5]. 
The first ideas of measuring testability in gate-level 
circuits [6] have been extended also to digital 
systems [7]. The known testability calculation 
methods use different approaches for gate- and RT 
levels. Basically, the well-known methods are not 
easily usable because for each component its own 
formula of testability calculation has to be given. In 
the present approach Decision Diagrams (DD) [8] 
are exploited for both, the gate level and the RT 
level testability calculation. The same models and 
similar path tracing procedures utilized as for test 
generation, and no particular libraries are needed 
for testability calculation. 

3.2 RT LEVEL DECISION DIAGRAMS  (DDs) 

In general case of RT level DDs the values of 
variables at nonterminal nodes (and functional 
expressions at terminal nodes are not binary.  
      Fig.4 presents an example of a word-level DD 
for a control part of a simple control part of a 
digital system. 
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Fig. 4. RT level DD for a control part 

 
     The variables of the DD have the following 
meaning: q denotes the next sate, q’ indicates the 
current state, xA and xB identify input signals, and 
the constants in terminal nodes labelthe next state 
value. Tracing the path activated by given values of 
q’, xA and xB we reach a terminal node which gives 
us the next state value.  
      An example of a register-level data-path and of 
his compressed DD is depicted in Fig.5. The DD in 
Fig.5 is the superposition of the components’ DDs 
of the given data path. 

3.3 CONTROLLABILITY  FOR RT LEVEL DDs 

For controlling a given working mode of the 
system, the control variables have to be assigned 
specific values. Controllability C(y=k) of a 
multivalued control signal y in a digital system to a 
specific value k can be regarded as the probability 
P(y=k) that y will take the value k. The computation 
of P(y=k) is based on traversing paths in the DD for 
y and using the formula: 
            P(y=k) =     Σ            Π P(x=e)                  (1) 
                          Li∈L(k)    x∈Xi 
where e is the value of the variable x needed for 
activating the path Li∈L(k) and L(k) is the set of all 
possible paths which enters into the terminal node 
with constant value k. 

As an example, we calculate the controllability 
of P(q=5) for DD in Fig.4 as follows: 

P(q=5) = P(q=2) P(xB=0) + P(q=3) + P(q=4). 

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4



IP Based SoC Design 2002 - October 30-31, 2002 5

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

 
 

Fig. 5. RT level DD for a data part 
 
For data variables (buses, registers) in 

hierarchical test generation we usually have to 
assign them symbolic values along some activated 
paths either from inputs of the system or from 
easily controlled internal points (like scan-path 
registers). For that case we need to calculate the 
controllabilities for creating such activated paths. 
Controllability C(R) of a data word R in a digital 
system can be regarded as the probability P(R=IN) 
that R can directly be loadable from a given control 
point IN. The computation of P(R=IN) is based on 
traversing paths in the DD and using the formula: 
     P(R=IN) =     Σ               Π P(x=e)                 (2) 
                       Li∈L(IN,R)    x∈Xi 

where Li∈L(IN,R) is the set of all possible paths to 
control the value of  R  from the control point IN. 

As an example, we calculate the controllability 
of P(R2=IN) in GR2 in Fig.5 as follows: 

P(R2=IN) = P(y4=2) P(y3=1). 

3.4 OBSERVABILITY  FOR RT LEVEL DDs 

For terminal nodes mT in a DD we define the 
observability O(z(mT)) of the functional expression 
z(mT)) as the probability P(y=z(mT)) that y will have 
the value equal to z(mT). The computation of 
P(y=z(mT)) is based on traversing paths in the DD 
Gy and using the formula: 
       P(y=z(mT))  =     Σ               Π P(x=e)             (3) 
                      Li∈L(m0,mT)    x∈Xi 

where Li∈L(m0,mT) is the set of all possible paths 
from the initial node m0 of the graph to the terminal 
node mT. To highlight the procedure, we calculate 
the observability of P(R2= R1+ R2) in GR2 in Fig.5 
as follows: 

P(R2= R1∗ R2) = P(y4=2) P(y3=3) P(y2=0). 

3.5 HIERARCHICAL  ATPG  (block7 in Fig.1) 
uses a top-down approach, with a novel meth-
od of combining random and deterministic 
techniques. Tests are generated for each 
functional unit (FU) of the system separately. 
First, a high-level symbolic test frame (test 

plan) is created for testing the given FU by 
deterministic search. The search is guided by 
the testability measures calculated by a 
testability analyzer. As the result of the search 
process, a symbolic path (a test frame) for 
propagating faults through the network of 
components is activated and corresponding 
constraints are extracted. The test frame will 
adopt the role of a filter between the random 

The TPG and the FU find a random test with 100% 
fault coverage for the component under test, 
another test frame will be chosen or generated in 
addition to the previously created ones. In such a 
way, the following main parts in the ATPG are 
used alternatively: deterministic high-level test 
frame generator, random low-level test generator, 
high-level simulator for transporting random 

 Fig.6. A set of low-level ATPG tools Turbo-
Tester 

 patterns to the component under test and low-level 
fault simulator for estimating the quality of random 
patterns. The mentioned low-level tools belong to 
Turbo Tester  software package in Fig.6  (also 
block 8 in Fig.1). 
 

Table 1. Exp.  results for hierarchical ATPGs 

4 EXPERIMENTS 

 The MOSCITO based environment has been 
utilized for research purposes.  The performance of 
the hierarchical ATPG (3) was compared against 
the existing university tools GATEST [10] and 
HITEC [11]. For that the translator 6 was 
necessary. The results of comparison of different 
ATPGs are given in Table 1. Actual stuck-at fault 
coverages of the test patterns generated by all the

DECIDER GATEST HITEC  
Fault 
cover 

% 

Time 
s 

Fault 
cover 

% 

Time 
s 

Fault 
cover 

% 

Time 
s 

GCD 91.0 3.4 92.2 89.8 89.3 195.6 
Mult 
8x8 79.4 13.6 77.3 1585 63.5 1793 

Diffe
g 

95.8 15.8 96.0 9720 95.1 N.A. 
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Table 2. Evaluation of testability measures in RTL test generation using DECIDER 

three tools were measured by the same fault 
simulator.  The Table 2 compares two different 
testability approaches: this one proposed in this 
paper with average result of random testability 
measures and the worst testability ordering known 
to us. The column ‘# of high level tests’ shows the 
total number of high-level tests set up by the 
ATPG. Columns ‘# tested’ show the number of 
these tests passed by DECIDER. Columns 
‘coverage’ show the percentage of the RTL tests 
passed. Note, that this is not the actual gate-level 
stuck-at fault coverage but rather an RT-level 
assessment. However, as our experience and 
previous research [10, 11] have shown, this number 
is very close to the gate-level fault coverage. As it 
can be seen from the Table 2, average test coverage 
for the benchmark set is 60 %. However, if 
inconvenient node ranking is used this number can 
drop as low as 40 %. The experiments showed, 
however, that the method published in [7] can 
increase the test coverage to 70 %, while the one 
proposed in this paper raises the coverage to 
roughly 80 %. 

 
6 CONCLUSIONS 
In the paper an Internet-based test environment 
supported by MOSCITO system [13] is presented. 
The environment is focussed on providing high-
level and logic level design flows with testability 
analysis, test pattern generation and fault simulation 
at register-transfer and gate level operational 
activities. The main effort was put on linking 
together test generators and fault simulators with 
varying functionalities available at geographically 
different sites. A novel approach of testability 
driven hierarchical test generation was developed 
and experimented. Differently from known ATPGs, 
the testability measures calculated at RT level were 
used for guiding high-level path activation search. 
The system provides interfaces and links to com-
mercial design environments and also to other 
university  tools. The functionality of the integrated 
design and test  system was verified by several 
benchmark circuits and by different design and test 
flows. Furthermore, authors believe that the 
MOSCITO architecture is powerful enough to 
solve similar problems in other application areas of 
automated system design. Future work will 

continue in this direction. 
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