
Andreas Lorenz, Markus Eisenhauer and Andreas Zimmermann. Elaborating a Framework for Open Human Computer
Interaction with Ambient Services. 4th International Workshop on Pervasive Mobile Interaction Devices, Sydney, Australia,
2008.

Elaborating a Framework for Open Human Computer
Interaction with Ambient Services

Andreas Lorenz, Markus Eisenhauer, Andreas Zimmermann
Fraunhofer Institute for Applied Information Technology

Schloss Birlinghoven
53754 St. Augustin, Germany

{andreas.lorenz, markus.eisenhauer, andreas.zimmermann}@fit.fraunhofer.de

ABSTRACT
In a world of ambient services, the technology disappears
into the surroundings until only the user interface remains
perceivable by users. Most preferably, the interface to in-
teract with an ambient service is separated from the device
hosting the services, e.g. the user interface is running on a
mobile device and connected with the devices in the envi-
ronment. In our work we will define a framework enabling
different ambient services to work together with different in-
put devices and vice versa. The goal is to enable the user
to employ the device that fits best to the current situation,
personal capabilities and gusto. In particular the use of de-
vices the user is already familiar with should be transferred
to additional or new services.

1. INTRODUCTION
In an ambient intelligence world, devices work together to
support people in carrying out their daily activities in an
easy, natural way using information and intelligence that is
hidden in the network connecting these devices. The tech-
nology disappears into the surroundings until only the user
interface remains perceivable by users. Key terms describing
ambient services are

• Embedded hardware integrated in the environment
(smart devices, sensors, interaction devices),

• Seamless mobile/fixed communication and computing
infrastructure (interoperability, wired and wireless net-
works) and

• Personalized human-computer interfaces.

In opposition to the desktop paradigm, in which a single
user consciously engages a single device for a specialized
purpose, someone interacting with ambient services engages
several computational devices and systems simultaneously.
In this work we will describe technologies to enable any de-
vice to be an interaction device for interacting with ambient
services. Because we address a wide range of computing de-
vices (mobile devices like mobile phone, Pocket-PC, voice
recording devices, gesture-based interaction device like Wii-
Controller, and other) we use the term input device for the
device the user has at hand.

In this paper we will elaborate a framework that abstracts
from concrete input devices. The paper covers the whole
process from identifying the needs and requirements, defini-
tion of the terms and components to the specification of the
framework.

1.1 Scenario
Burkhard, a business man always interested in the newest
technology, went to his favorite media store to get the newest
home cinema equipment. He has to listen to a long intro-
duction from the shop assistant, because there are so many
options; at the end, Burkhard has the choice between an-
other remote control or just a Compact-Disc with software
for any Java-equipped mobile device. Because his wife is al-
ready tired of the zoo of remote controls on the coffee table
in the living room, Burkhard takes the CD and installs a
small piece of software at his pen-enabled PDA, which en-
ables the device to be the remote control of the home-cinema
equipment. For his wife, he installs the same software on her
mobile phone - because her device does not support a pen,
she uses another version that is using the joystick instead
of the touch-sensitive screen. With the software, everybody
is able to elect the best device and the favorite input style.
The input is automatically translated to control commands
and sent to the environmental device, which reacts accord-
ingly. From now, it will be an important feature of any new
electronic product to work together with Burkhard’s smart-
phone as control device, too.

The scenario illustrates the vision of replacing hardware
remote controls with software applications to be installed on
any existing device. Other scenario would envision high in-
tegration of different input modalities with one and the same
service, for example to have a haptic remote user interface
for one user and in parallel a speech control for another
user with visual acuity. Both envisions the selection of any
modality by the user without the need to change the service.

2. PROBLEM DESCRIPTION
One limiting factor for market penetration of ambient ser-
vices is the dependency between services and required inter-
action devices and methods. In private environments, e.g.
at home, it combines purchasing a new product with the ac-
companied requirement to learn operating a new device and
a new interaction method. In foreign environments, private
devices are completely useless because they are not able to
interact with the environment. The provision of special pur-
pose devices by the vendor has proven to be one of the most
limiting factor for acceptance of public ambient services.

What device is used is defined by the vendor of the ser-
vice - regardless on the capabilities of the user, her devices
already available and the task currently performed. For re-
mote interaction with a service this pre-selection of the in-
put device(s) becomes obsolete. Example: A Movie-Player
is running on a PC with TV-output. For starting the play-



Andreas Lorenz, Markus Eisenhauer and Andreas Zimmermann. Elaborating a Framework for Open Human Computer
Interaction with Ambient Services. 4th International Workshop on Pervasive Mobile Interaction Devices, Sydney, Australia,
2008.

back, the player understands clicking on the “Play”-Button
with the mouse, entering “Ctrl-P” with a keyboard or saying
“Play” into the microphone.

The interaction could be improved if the user is in position
of decision-maker, mainly because of four reasons:

1. The service usually does not care about the physical
device the user employed. The source can be any de-
vice that is able to deliver the input to the service.

Example: To invoke the “play”-method it is equal to
the Movie-Player if the user employed the mouse, the
keyboard or the microphone to express the input.

2. The service usually does not care about the input modal-
ity the user has chosen. The user can select any style
that can be transformed one-to-one into the right for-
mat.

Example: To invoke the “play”-method it is equal to
the Movie-Player if the user has pressed“Ctrl-P”, clicked
on the “Play”-button or spoke the command.

3. The input devices usually work independent of the per-
forming services, in particular they do not care about
the behavior of the service.

Example: Whenever the user pressed “Ctrl-P”, clicked
on the button, or spoke“Play”neither of the keyboard,
the mouse or the microphone cares about whether the
movie starts playing or not. Either knows nothing
about movies.

4. The user cares about the device, the modality
and the behavior of the service depending on

• Situation

Example: In front of the PC, the user might take
the mouse; sitting on the couch, the user might
employ a spoken command.

• Task

Example: For starting the playback, the user might
employ the speech recognition - for browsing the
file system searching a movie, the user might switch
to the mouse.

• Preferences

Example: The user might find it strange to chat
with a computer system and prefer to use mouse
or keyboard if possible.

• Capabilities

Example: A physical impaired user might not be
able to operate a mouse but capable of speech.

With our work we address service developers who want to
enable users employ any device as input device, and inter-
action developers who want to enable input devices to work
together with environmental services. We will empower dis-
tributing input events from any source to any service cur-
rently enabled without loosing it’s meaning to the service.
The remote access is illustrated in Figure 1.

Figure 1: Transmission of user input from any re-
mote device to service(s).

2.1 Requirements
The first step is to enable services to receive and consume
input from devices a user already knows. The way to create
desired input with the device, its meaning to the service, and
the expected reaction from the service must be clear to the
user. To be attractive to a wide range of users, the solution
should work on different devices and in different environ-
ments. The communication of the device with the service
must be wireless in order to be usable from any location.

The more developers are able to integrate their solutions,
the more solutions will be available for selection. Usually,
services from different vendors do not speak the same lan-
guage. For integration we need to have a common way to
express meaning of input events and a unique process for the
exchange. The interface of the service should be consistent
with available standards as much as possible. All specifica-
tions need to be well defined, first-class documented, easy to
understand (here: “easy” from the perspective of a software-
developer) and as low resource consuming as possible in or-
der to be acceptable by developers. The implementation on
both the input device and the service should be independent
from operating systems and programming language as much
as possible.

2.2 Goal
The goal of this work is to enable input devices to deliver
user input to ambient services. The input device offers any
kind of user interface meaningful to the selected ambient
service(s). The input device transfers this information to
the service which reacts in its specific way.

2.3 Research Statement
One-to-one semantic correspondence between remote input
device and processing service is key to open Human-Computer
Interaction with interactive ambient services with the user’s
choice of input devices.

3. RELATED WORK
System capabilities of ambient services are limited if the user
is not equipped with a specific input device to have a channel
for explicit input or controlling the behavior. To overcome
limitations, the user could be equipped with a service-related
device. The hand-out of devices from a vendor of the service
boosts costs, requires the user to be willing to pick it up
and requires trust into the user to bring it back at the end
of the stay. The use of any private device is not possible
today because they do usually not speak the language of
the environment, not even in private settings.

The zoo of remote controls in home environments indi-
cates high relevance of expressing input to remote devices.
Excluding (wireless) mouse and keyboard input, the type



Andreas Lorenz, Markus Eisenhauer and Andreas Zimmermann. Elaborating a Framework for Open Human Computer
Interaction with Ambient Services. 4th International Workshop on Pervasive Mobile Interaction Devices, Sydney, Australia,
2008.

Figure 2: The Technical Components

of remote input can be categorized with rapidly decreasing
percentage of use: Action events like On/Off, Up/Down,
Play/Stop are present at almost all remote controls; Num-
bers and short texts are sometimes used, for example to op-
erate the phone, switch TV-channels, or name movie record-
ings; hardly any use of longer text and pointer controls.

Iftode et al [5] identified the need for a simple, universal
solution to control different applications in the environment
of the user, which end-users are likely to accept easily. The
input device should be programmable and support dynamic
software extension for interaction with additional ambient
services. For controlling the service, many approaches al-
low users to design their own remote control by creating
new graphical interfaces that are downloaded to the input
device after compilation. Beside these haptic input capabil-
ities it is also possible to use speech recorded by a mobile
device to control a remote system. Using for instance the
Personal Universal Controller [8] a user can speak a com-
mand through which this is executed by the system. The
focus is on automatic creation of the user interface from a
description language.

Research in projects like IBM’s “Universal Information
Appliance” (UIA, [3]) or XWeb [9] results in the definition of
a set of incompatible description languages like MoDAL (the
XML-based language used by UIA) and UIML [1], where the
programmer provides a specification (model) of the applica-
tion, the display and the user. The concrete user interface
is thus decoupled from the application, but only valid for a
specific one. Though they are often based on similar com-
ponents, they cannot be applied to another ambient service.

The iStuff Mobile architecture [2] is a platform combining
(physical) sensor enhanced mobile phones and interactive
spaces. The platform uses an Event-Heap [6] for distributing
events of a specific type with specific fields. The mobile
phone is then capable of sensing (local) user activity (e.g.
key pressed) that are posted as (iStuff-)events on the heap.

3.1 Summary
Transferring events to any ambient service generally capable
of performing the input but not able to correctly understand
that particular type and content is useless. For develop-
ment of GUI-based desktop applications there exist already
common techniques and events that have a clear meaning
to any application. For example, independent events like
mouse-clicks can be delivered to any service; the mouse or
the mouse-button itself does not know about the meaning
to the application. The mouse could be replaced with any
other physical device; if it fires correct mouse-events, the
application will understand.

4. TERMS AND DEFINITIONS
For our work we identified the following components. Figure
2 illustrates their places in the overall process.

Input Device. The mobile device the user engages to con-
trol the ambient service. The type and shape of the device is
not defined per se. On the remote device there is a client ap-
plication running as the counterpart of the user-interaction.
Examples: Mobile phone, laptop, microphone, traditional
computer systems.

Controlled Device. A computing device that is available
in the current environment of the user.
Examples: Small items providing information (sensors), out-
put devices (displays, speakers), traditional computer sys-
tems.

Ambient Service. An interactive application (short ser-
vice) running on any controlled device. The user consciously
interacts with the service in order to get information, adjust
settings or control the behavior.
Examples: Small services providing information to the user
(like the temperature), electronically actuate output devices
(like playing an audio file at a speaker installation in a
room), GUI-based applications on embedded devices (like
showing a movie on the TV).

Client. The role of the information provider in the client/-
server approach. In our case, the client is the application
running on the input device, receiving input from the user
and delivering the input in a feasible manner to the event-
consumer.
Examples: Networked application with graphical compo-
nents, audio/voice-recognition systems, camera-based input,
gesture recognition applications.

Server. The role of an information receiver in the client/-
server approach. In our case, the server is the application
running on the controlled device providing any number of
services.
Examples: Networked application with or without local user-
interface, TCP/IP-Socket listener, Web-Server.

Input Method. An abstract definition of a way to express
input by the user, including the modality used with the input
device. The potential meaning, interpretation and reaction
depends on the service implementation.
Examples: Common GUI-based methods (for example click-
ing a certain button), voice commands (like spoken word
“up”), gestures (like “Thumb up”) or any other method. The
examples could be interpreted to increase the volume by an
audio player, but other services could implement their own
interpretation (for example to move the cursor upwards).

Input Event. The event delivered by the client to the server,
containing the type of the event and other event-specific
data.
Examples: Button-pressed events, key-typed events, or mouse-
move events. The events include additional information like
the character assigned with a pressed key or the position
where a mouse click occurred.

Event Consumer. A set of any number (including zero) of
ambient services processing an event in their defined man-
ner. If the set is empty, no service is able to make use of the
information; the event is ignored.



Andreas Lorenz, Markus Eisenhauer and Andreas Zimmermann. Elaborating a Framework for Open Human Computer
Interaction with Ambient Services. 4th International Workshop on Pervasive Mobile Interaction Devices, Sydney, Australia,
2008.

5. DESIGN OF A FRAMEWORK
A software framework is an abstract design for a category
of software systems. It defines a set of cooperating compo-
nents, and the control flow in the system [7]. Some defini-
tions implicitly require an object-oriented software design,
defining a framework as an“architecture of class hierarchies”
[10]. This might exclude efficient implementations based on
other paradigms and get in the way of mixing up differ-
ent software-designs for implementing specific components
or operations. Because we are focusing on a design of solu-
tion(s), we will use the following definition of a framework:

Framework. A Framework is a generic architecture of a so-
lution for a set of similar problems.

In computer science, the used term architecture is defined
as the ”fundamental organization of a system embodied in
its components, their relationships to each other, and to the
environment, and the principles guiding its design and evo-
lution” [4].

In traditional (Graphical) User Interfaces (GUI), the user
has access to application dependent graphic components.
The user employs a mouse or keyboard in order to deliver in-
put to the service. Most programming languages offer com-
ponents to support the development of user interfaces, to-
gether with back-end-mechanisms for performing user input
(for example event-listener mechanism). In this case, the
service provides a performing method that is associated to
input events occurring on the control component.

For the definition of our architecture, we abstract from the
GUI-based control flow by defining a Virtual Input Device.
It has the same attributes and behavior like any other device
running a user interface except that it’s shape is not defined;
in particular, it does not necessarily provide any graphical
representation. The only visible knowledge is a precise spec-
ification of input event(s) it delivers on the user’s request.
Potentially in parallel to existing graphical items, the de-
veloper registers listeners to the events for performing the
input stream coming from virtual input devices.

The derived abstract system architecture is illustrated in
Figure 3. The information flow to transfer an input event
occurring on an input device to an ambient service consists
of six steps to be performed: (1) Triggered by the user inter-
action, the client on the input device receives an input event
from the local resources. (2) The input event is translated
into a common representation. (3) The event is sent from
the input device to the controlled device. (4) The input
event is unpacked from its representation. (5) The input
event is delivered to the target service(s). (6) The target
service(s) consume the event. In this flow, the virtual input
device covers the steps (2)-(5). For implementation we will
use standard web-service technology defining input-adapters
as web-services that are remotely executed over the network.

6. BENEFITS
The virtual input device covers the complexity of delivering
input events from the client to the server. On the client
side, the local event is handed over to a specific component
as if the component was a local event consumer (“fire-and-

Figure 3: The abstract system architecture

forget”). On the server side, there is no difference between
traditional event handlers and listeners to virtual input de-
vices, which supports the integration between the two and
transferring developer skills to the new setting. Because the
meaning of an input event becomes independent from its
representation, the creation of an input event is not bound
to any static process: it is open to the developer, the capabil-
ities of the device and the abilities of the user to employ any
physical device and select the appropriate input method.

7. REFERENCES
[1] M. Abrams, C. Phanouriou, A. Batongbacal,

S. Williams, and J. Shuster. UIML: An
appliance-independent XML user interface language.
In International World Wide Web Conference,
Toronto, Canada, 1999.

[2] R. Ballagas, F. Memon, R. Reiners, and J. Borchers.
iStuff Mobile: Rapidly prototyping new mobile phone
interfaces for ubiquitous computing. In SIGCHI
Conference on Human Factors in Computing Systems,
pages 1107–1116, San Jose, CA, 2007. ACM Press.

[3] K. Eustice, T. Lehman, A. Morales, M. Munson,
S. Edlund, and M. Guillen. A universal information
appliance. IBM Systems Journal, 38(4):575–601, 1999.

[4] IEEE. Systems and software engineering -
recommended practice for architectural description of
software-intensive systems. ISO/IEC 42010 IEEE Std
1471-2000, pages c1–24, July 2007.

[5] L. Iftode, C. Borcea, N. Ravi, P. Kang, and P. Zhou.
Smart phone: An embedded system for universal
interactions. In IEEE Intl. Workshop on Future
Trends of Distributed Computing Systems, 2004.

[6] B. Johanson and A. Fox. The event heap: A
coordination infrastructure for interactive workspaces.
In IEEE Workshop on Mobile Computing Systems and
Applications, page 83. IEEE, 2002.

[7] J. Ludewig and H. Lichter. Software Engineering.
dpunkt.verlag, Heidelberg, 2007.

[8] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating
remote control interfaces for complex appliances. In
ACM symposium on User interface software and
technology, Paris, France, 2002. ACM Press.

[9] D. Olsen, S. Jefferies, T. Nielsen, W. Moyes, and
P. Fredrickson. Cross-modal interaction using xweb. In
Annual ACM Symposium on User Interface Software
and Technology, pages 191–200. ACM Press, 2000.

[10] H. Züllighoven. Object-Oriented Construction
Handbook. dpunkt.verlag, Heidelberg, 2005.


