SHEET METAL ASSORTMENT OPTIMIZATION WITH K-MEANS

Markus Witthaut and Nils Kalbe
Agenda

1. Introduction
2. State of the art and related research
3. Optimization approach for simulating inventory scenarios
4. Architecture of the developed software tool
5. Results and application experience
6. Outlook and further research activities
Introduction

Inventory optimization in the procurement of sheet metal for small series and contract manufacturer

- Much inventory binds capital
- Low inventory reduces customer service
- High number of variants for projects or small batch sizes
- Large minimal order lot sizes
- Handling effort due to mixed stacks

Reducing the number of the variants to be ordered by using the opportunity to substitute sheets by a larger sheet

Sources: 1 Ferro Umformtechnik
Inventory optimization through reduction of variants

- All variants
- Product groups
 - Metal quality
 - Surface treatment
 - Thickness
 - Customer

- Clusters
- Scrap loss: 14%, 37%, 52%, 13%
- Sheets to be ordered
State of the art and related research

Industry:
Companies apply established methods for inventory management from ERP software and can be found in literature (e.g. ABC-Analysis)

Cutting stock problem (CSP)
- Cutting standard-sized pieces into pieces of required size while minimizing waste
- Similarities with knapsack / bin packing problem
- Difference: Cut several sheets from a single sourced sheet

Much in common with both problems but no exact fitting

Assortment problem
- When company is unable to store all materials, they must choose what to store and what not.
- ABC-Analysis
- Inventory Pooling with DES
- Simulation of operation concepts with DES

Sources: 1 Wäscher et al., 2007; 2 Horowitz & Sahni, 1974; 3 Pentico, 2008; 4 Sachs, 2015; 5 Chen et al., 2008; 6 Hafner et al., 2019; 7 Teter et al., 2019
Optimization approach for simulating inventory scenarios

1. Build product groups and define the number of clusters k
2. Find optimal clusters with minimum scrap loss
3. Evaluate cost effects

- All variants
- Product groups
 - Metal quality
 - Surface treatment
 - Thickness
 - Customer
- Clusters
- Scrap loss:
 - 14%
 - 37%
 - 52%
 - 13%
- Sheets to be ordered
1. Define the number of clusters k for each product group

- Define target number of variants for all articles
- Build product groups (e.g. metal quality, surface treatment and thickness)
- Distribute available clusters to all product groups with a heuristic approach depending on the consumption
 - Product group with large consumption gets more clusters
 - Product group with small consumption gets less clusters
2. Find optimal clusters with minimum scrap loss

- Optimization problem can be described as an integer linear program\(^1\)
- Number of allocations: \(k^n\)
- NP-complete problem \(\rightarrow\) not computable for practical applications\(^2\)
- \(k\)-Means algorithm as heuristic approach\(^3\)

\[
\text{min} \sum_{i=1}^{n} \sum_{j=1}^{k} r_{i,j} (l_j \times w_j - l_i \times w_i)
\]

Sources: \(^1\)Schrijver, 1998; \(^2\)Karp, 1972; \(^3\)Pedregosa et al. 2011

© Fraunhofer IML - confidential - slide 8
3. Evaluate cost effects

- Calculate effects of different simulation scenarios
- Economic-Order-Quantity (EOQ)\(^1\) policy was used to calculate effects of ordering costs and inventory level

<table>
<thead>
<tr>
<th>Scenario parameter</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target number of clusters</td>
<td>Scrap loss</td>
</tr>
<tr>
<td>Consumption forecast</td>
<td>Number of clusters per product group & scrap loss</td>
</tr>
<tr>
<td>Customer specific material costs</td>
<td>Same clustering decisions for different customers can generate different costs</td>
</tr>
<tr>
<td>Administrative ordering costs</td>
<td>Decreases in connection with number of clusters</td>
</tr>
<tr>
<td>Scrap price</td>
<td>Positive effect on costs</td>
</tr>
<tr>
<td>Safety stock</td>
<td>Large effect on average bound capital</td>
</tr>
<tr>
<td>Storage fix costs</td>
<td>Dependency on bound capital and average inventory levels</td>
</tr>
</tbody>
</table>

Source: *Schwarz, 2008*

© Fraunhofer IML - confidential - slide 9
Architecture of the developed software tool

Source: ¹Pedregosa et al. 2011
© Fraunhofer IML · confidential · slide 10
Results and application experience

Results

- Developed and evaluated an application-specific AI-model for inventory optimization
- This toolset enables customers to simulate and evaluate different inventory scenarios (e.g. future demand scenarios)
- Company used the solution to reduce number of its sourced sheets

What we’ve learned

- Tools like Power BI with the algorithmic of open-source AI-libraries like scit-kit learn enable a rapid implementation of the solution
- Toolset supports better and faster decision making regarding variant reduction for future demand scenarios
- API of Power BI with python is difficult to debug and consumes considerable time
Outlook and further research activities

- Extending the modelling approach by considering further costs and performance attributes.
- Implement algorithm which calculates the optimal number of clusters k (not only optimal allocation)
- Benchmarking the approach with exact solution (regarding quality and runtime)
- Effects on customer service and handling costs
- Using other clustering algorithms and other operations research approaches not based on clustering
Thank you for your attention!

Nils Kalbe, M.Sc.
Fraunhofer Institute for Material Flow and Logistics IML
Division Enterprise Logistics
Department Production Logistics
Joseph-von-Fraunhofer-Str. 2-4
D-44227 Dortmund, Germany
Phone: +49 (231) 9743-460
E-Mail: nils.kalbe@iml.fraunhofer.de
Web: http://www.iml.fraunhofer.de
Sources

