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1 Introduction

Miguel Arias Cañete, Commissioner for Climate Action and Energy described the urge
of investments in renewable energies in the following way [30]: �Global investments hold
the key to �ghting climate change, with trillions already invested in solutions such as
renewables and energy e�ciency. The Paris Agreement is a massive investment oppor-
tunity[...]�. The urgent need to transition to climate-neutral energy systems has made
renewable energies a central focus of research and development e�orts worldwide. Among
their many advantages, these sources of energy are decentralized, giving cities and com-
munities the ability to generate and supply themselves with a signi�cant proportion of
their energy needs. However: about 75 % of the world's energy consumption occurs in
cities, resulting in approximately 70 % of global carbon dioxide emissions [9]. Buildings
are a major contributor to these emissions, accounting for a signi�cant share of global
energy consumption and emissions. In 2021, buildings were responsible for 30 % of �nal
energy consumption, with direct and indirect emissions contributing to a total of 27 % of
global energy sector emissions [27]. Furthermore, it is projected that the global building
stock will double by 2050 [30]. These points make it evident that there is a considerable
amount of investments required to meet the energy transition goals.

The German building sector is heavily reliant of fossil fuel, accounting for over 80 % of
its energy share [6]. However, the German government is now planning to install 500,000
heat pumps annually from 2024, in collaboration with relevant industry players [18]. In
addition to the investment in renewable energies, a large part of the building stock is also
being refurbished, with a refurbishment rate of currently 1 % which is to be increased up
to 2 % [30]. Conversely, this means signi�cantly more investment in residential energy
concepts.

Usually, traditional approaches like the discount cash �ow (DCF) method are being
used when valuing investments into building utility concepts. Investing in renewable
energies, and therefore residential energy technologies, is associated with many uncer-
tainties, such as �uctuating energy prices and political framework conditions. The DCF
method is not made for valuing investments that are connected to uncertainties, that
is why there is a need for another method to value this kind of investments. Recent
events like the war in Ukraine that led to supply shortages in gas supply or the Covid-19
pandemic have demonstrated the volatility of the energy market in response to external
in�uences. Therefore, a method that considers uncertainty, evaluates planned investment
accordingly and allows the investor options like waiting and abandoning the investment
is crucial.

Real options (RO) theory provides an e�cient way to take these uncertainties into
account. Up to now, the RO analysis has found little application in the valuation of
renewable energy projects because the method is often complex and hard to understand.
Horn et al. [40] surveyed 1500 of the largest Scandinavian companies, discovering only
6 % of the respondents use RO, the most used technique, the NPV method, is used by
74 % of the companies. The lack of familiarity is the most named reason why companies
are not using ROs, respondents that are familiar with ROs are mostly deterred by the
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complexity of this approach. The authors of Loncar et al. [54] claim decision makers
will become more open to ROs if they acquire a deeper understanding, and possible
investment strategies. The decision to base the algorithm used in this work on the
approach developed by Locatelli et al. [53] is primarily because of its good usability and
understandability.

This master thesis aims to implement a Monte Carlo-based RO analysis to evaluate
technology options for the transformation paths of residential energy systems. Despite the
named reasons, so far, the literature lacks examples of applying RO theory for use cases in
the residential energy sector. In this thesis, the method developed by Locatelli et al. [53]
will be utilized, which was particularly developed for use cases in the energy sector. The
approach they developed is the basis of this work, the concept of "exercise thresholds"
is introduced and used in this work to receive the relevant investment parameters. The
aim of this work is to apply the method and answer the following questions:

ˆ How should the applicability of the Monte Carlo algorithm according to Locatelli
be evaluated for the assessment of investments in technology options for residential
energy systems?

ˆ What in�uence does the consideration of waiting options have on the evaluation of
residential technology options?

In the context of this work, a prototype is developed to answer these questions.
At the beginning, di�erent methods for investment valuation are presented. Advan-

tages and disadvantages are worked out, and it is seen to what extent these methods are
suitable for the evaluation of uncertainties and �exibilities. Subsequently, the method
of the RO is explained by taking relevant literature in the energy sector and in partic-
ular for residential energy technologies into account. Then an overview of the current
transformation paths for the building sector is presented.

The next chapter presents the basic framework of the model and discusses the methods
used to determine the key parameters for building the RO model.

In the results section, it is presented how the developed model was parameterized and
the results for each technology. In addition, a sensitivity analysis is performed.

Afterwards, the mentioned research questions are answered, resulting questions and
research areas for the improvement of the model are presented.

2



2 Real Options Theory

2.1 Approaches to Investment Valuation

There are multiple ways to determine the value of investments, some of them are shown
in Figure 2.1. Depending on the selected method for calculating the investment value,
the uncertainty or �exibility of the investment is considered, and it is possible to combine
these methods to end up with the desired results.

high

high

Flexibility

Uncertainty

annuity
method

Decision
Tree

Monte-
Carlo-

Simulation

Real
Options

DCF
Method

Figure 2.1: Methods for the assessment of investments based on [39].

The most commonly used method to assess projects, including Renewable Energy
projects, is the DCF method [83]. When applying this method, the cash �ows are
discounted to the current value, and the Net Present Value (NPV) is the sum of DCF over
the investment life cycle [61]. This method is, due to its simplicity, easy to implement.
However, the DCF method has three major drawbacks that have favored the development
of the RO approach. The drawbacks are the following [53]:

1. It is not easy to estimate the future cash �ow of a project. The price of the output,
production rate and the investment cost are assumed to be constant over time,
which is not the case in reality.
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2. The choice of the discount rate re�ects the risks of the cash �ows, which is un-
avoidably subject to estimation errors.

3. The assumed passivity of the management, such as the option to delay, expand or
to abandon the project if the outcome is extremely negative.

The consequence of this drawbacks in particular for energy projects leads to the interest
in more �exible tools to value investment projects [80, 81, 43], so the uncertainty of
investment can be handled more accurate [49, 37].

One alternative approach is the decision tree method, where parameters that generate
uncertainties of investments are considered with the help of a �nite number of environ-
mental states and their probabilities of occurrence in a dynamic model [36]. Investment
decisions can then be made (sequentially) as a function of these environmental states
and the prede�ned uncertainties can be taken into account [57].

In �nance, the annuity method, also known as the equivalent annual cost method, is
used to determine the cost per year of owning and operating an asset over its lifetime.
It involves calculating the equivalent annual cost by dividing the negative NPV of a
project by the "present value of the annuity factor." This approach allows for a more
straightforward assessment of the project's expenses on an annual basis, making it easier
to compare di�erent investment options.

Another approach is to use the Monte Carlo method in project evaluation, which en-
ables the creation of a distribution of potential values by considering various sources of
uncertainty. This technique is particularly suitable for assessing projects with high levels
of uncertainty, allowing decision-makers to gain a more comprehensive understanding of
risks and potential outcomes. By running multiple simulations, the Monte Carlo method
generates a range of potential project values, along with their associated probabilities.
This statistical approach is particularly valuable for projects with high levels of uncer-
tainty, as it provides decision-makers with a more comprehensive understanding of the
project's risks and rewards [8]. The RO approach, which will be used in this thesis, will
be explained in detail in the next section.

2.2 Real Options Theory

The problems with using DCF methods were discussed in the previous section. In order to
overcome these limitations, the concept of "options" can be employed, which provides the
right to react to new market situations and introduces additional �exibility to investment
decisions. To better understand the theory of the RO approach, it is crucial to clarify
the di�erence between�nancial options and real options.

Financial options include a large and diverse group of assets of individual stocks,
stock indices, government bonds, currencies, precious metals, and futures contracts.Real
options include capital budgeting, investment decisions, and business transactions. [20]

Table 2.1 shows the analogy between �nancial and ROs, highlighting their respective
characteristics.

4
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Table 2.1: Analogy between �nancial and real options [71].
Financial Options Real Options
Stock Price Present value of cash �ows from the Project
Exercise Price New investment required
Time to expiration Length of time until decision must be made
Risk-free rate of return Time value of money
Volatility Risk of expected returns

The RO approach takes three characteristics into account to determine the optimal
decisions of investors [29]. Firstly, investments are partially or fully irreversible, that
means once an investment decision is made, it is di�cult or connected with high costs
to reverse it (irreversibility). Making irreversible investment decisions when facing un-
certainty is associated with a high risk. Secondly, the value of an investment can be
increased by delaying the investment decision and gathering more information (�exi-
bility). By postponing the investment, the investor is allowed to reduce the risk of the
investment by making more informed investment decisions once additional information is
available. Lastly, investments are inherently subject to uncertainties, that originate from
various factors, such as technological advancements, market dynamics, policy changes,
and societal in�uences [48] (uncertainty). These uncertainties introduce potential risks
for investment decisions and have a substantial impact on investment outcomes.

RO theory considers the factors of irreversibility, �exibility, and uncertainty, enabling
decision-makers to incorporate them into their investment analysis. By considering these
elements, RO theory provides a comprehensive framework to assess and manage risks
associated with investment decisions.

The most common RO valuation techniques will be explored, which serve as essential
tools for integrating the dimensions of time, uncertainty, and �exibility into investment
decision-making. These techniques provide practical approaches to assess and evaluate
the value of ROs within investment scenarios. These techniques have gained attention
in various research areas and o�er e�ective ways to assess the value of ROs. There are
three commonly used methods to solve this problem [68]: (1) Black-Scholes equation [17]
(stochastic di�erential equations), (2) dynamic programming [25] (binomial models), and
(3) stochastic simulation models (Monte Carlo). Black and Scholes model [17] was the
�rst successful attempt to quantify the value of options in �nancial markets. They de-
veloped a partial derivative equation that can price the value of an option, based on the
assumption that stock prices follow a Brownian Motion. Cox et al. [25] assume that
the stock price follows a binomial process over a series of discrete time steps. At each
time step, the price can either move up or down. The Monte-Carlo simulation has three
signi�cant advantages over the Black-Scholes and binomial tree techniques [68]: It is pos-
sible to model multiple underlying assets, to introduce cash �ows from di�erent sources
and to input multiple sources of uncertainty with di�erent types of stochastic behaviour.
One major drawback of the Monte-Carlo simulation is that it reveals uncertain paths for-
wards, but optimal timing for investments must be obtained in backwards fashion [10],
like it is done in dynamic programming. The approach tackling this issue in the Least
Squares Monte-Carlo algorithm developed by Longsta� and Schwartz [55]. This approach
can reduce computation time compared to a traditional Monte-Carlo simulation and also
obtains the optimal exercise strategy for each path.

ROs can be categorized into three main types, as proposed by Copeland and Keenan
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[23, 24]. These categories can be classi�ed into growth options, deferral/learning options,
and abandonment options:

1. Investment and growth options:These include (1)scale-up options, early entrants
can take advantage of cost-e�ective follow-on investments later on when the market
grows; (2) switch-up options in which a rapid commitment to the �rst generation
of a product or technology gives a company a preferred position in moving to the
next generation of the product or technology; and (3)scope-up options. Investing
in proprietary assets in one industry allows a company to enter another industry
at a low cost.

2. Deferral and learning options: Also called study/start options, delay the invest-
ment until more information or skill is acquired.

3. Disinvestment and shrinkage options:These include (1)scale-down options, where
the investor shuts down or shrinks a project part until new information are changing
the expected payo�s; (2) switch-down options to more cost e�ective and �exible
assets as new information is obtained. In the case of investing into technologies to
supply buildings with energy, that would be a switch in the used technology; and
(3) scope-down options where I limit the scope of (or abandon) operations when
there is no further potential in a business opportunity.

2.3 Real Options in the Energy Sector

The characteristics of irreversibility, uncertainty, and �exibility can all be found in the
energy sector. At this point it might be important to mention that the term �exibility,
usually refers to the �exible operation of energy assets when used in the energy sector,
in the case of this work it refers to the �exibility of a decision maker during the planning
phase of the system.

There are a variety of uncertainties that can arise when investing in the energy sector,
that signi�cantly in�uence the value of the project. In the energy sector in particular,
these uncertainties include volatile market prices for gas and electricity, the political
framework, which include di�erent �nancial promotion of the respective technologies
and changes in Feed-in-Tarif laws, as example for Germany [52, 12]. The constantly
evolving and changing conditions are leading to uncertainties, when performing in an
investment in the energy sector and make it a di�cult challenge to value investment in
the energy sector. Such uncertainties raise questions about the long-term viability of
technologies and which investments will ultimately yield the highest returns.

In addition to uncertainty, the �exibility of the investment also plays a crucial role in
decision-making in the energy sector. The �exibility of using investment options allows
the investor to choose when to invest, providing the opportunity to wait and make a
more informed decision. Moreover, �exible decision-making allows investors to choose
from a variety of technologies available in the market. This further enhances the value of
using ROs, as each technology is in�uenced by di�erent uncertainties [71]. The ability to
consider these uncertainties and select the most suitable technology becomes a signi�cant
advantage in the investment evaluation process.

In the energy sector, especially residential energy in the case of this work, the utilization
of ROs can be a powerful tool to value the �exibility of investment decisions and to take
uncertainties into account. To gain insights into potential applications within the energy
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sector, �rst, general applications in this �eld will be examined. Subsequently, the focus
will shift to residential energy technologies and the selected methodology employed in
this thesis.

Relevant Literature Real Options in the Energy Sector The literature review �rst
examines the sources of uncertainty and the evaluation techniques commonly associated
with renewable energy projects. The review papers Alonso-Travesset [10], Kozlova [46]
and Ceseña [21] investigate sources and di�erent types of uncertainties when applying RO
methods for the valuation of renewable energy projects. The most commonly uncertain-
ties analyzed in these papers are the electricity price, capital expenditure and operational
expenditure, governmental subsidies, CO2 Price, Fuel price. Electricity prices had the
biggest share of interest in the reviewed papers with 70 % in Alonso-Travesset and 48 %
in Kozlova. Kozlova also names the commonly used approaches for modeling and valu-
ing RO, such as partial di�erential equations expressed with the Black-Scholes model,
Binomial trees, simulations in particular the Monte Carlo Simulation, Fuzzy Theory and
Dynamic Programming.

Other papers that present relevant use cases are the following: Nadajarah and Sec-
omandi [63] give an overview of the current state of applications of RO theory in the
energy sector. They investigate the RO elements - option type, valuation methodology,
model formulation, price risk dynamics and optimization scheme. They also give an
outlook of possible future research opportunities, which are - the transition to a clean
energy landscape, rich models and advanced methods, and the analysis, support, and
improvement of practice.

Bøckman et al. [19] propose a RO model to assess small hydropower projects that are
subject to uncertain electricity prices. They found a certain price limit for initiating the
project. Three projects were assessed using this method, with two being good investments
and one not being optimal due to the value of the RO being higher than the NPV.

In Muche et al. [62], the valuation of a pump storage using a RO approach that
considers future price based unit commitment planning is discussed. The developed
power price model is used to capture the properties of power prices, the simulation is
carried out to determine the optimal unit commitment and annual total contribution
margin for each simulated price path. The RO based valuation is compared with the
traditional NPV approach, results show that the NPV approach could result in smaller
investment values and therefore face wrong investment decisions.

Mutale et al. [59] discuss the importance of renewable energy generation and the need
for economic drivers for investment in the sector. ROs theory is explored as a possible
economic driver, but further development is required. An advanced ROs methodology
is introduced and applied to a hydro power case study, showing higher expected pro�ts
compared to other planning methodologies.

Moriaty et al. [45] propose a model for optimal and dynamic control and long-term val-
uation of CHP-thermal storage in the presence of uncertain market prices. The proposed
approach has been tested on a UK district energy system with CHP, back-up boiler, and
thermal storage, and the �ndings indicate that the operating cost reductions o�ered by
heat storage are robust. They state that thermal storage can be a key component to
enable �exibility in district energy systems and is improving their business case.

Xiu et al. [86] determine the investment value of di�erent storage technologies (li-ion
batteries, vanadium redox �ow batteries, and sodium sulfur batteries) using the binary
tree analysis method for RO pricing. The study shows that the investment economy of
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li-ion battery energy storage system is better than the other two systems under the con-
dition of storage system cost. The Li-ion battery energy storage system has investment
income if considering its direct bene�ts, coal saving bene�ts, and environmental bene�ts
from the view of social bene�ts. The authors suggest that policymakers can consider the
signi�cant role of energy storage systems on power system stability and introduce subsidy
policies on storage projects based on coal saving bene�ts and environmental bene�ts of
the energy storage system.

Applications from Literature in the Residential Energy Sector To date, there have
been almost no cases in the literature where ROs have been used to evaluate investments
in energy-generating technologies in buildings and districts [82].

In Andreolli et al. [11], a theoretical framework is proposed using a ROs approach
to model households decisions to invest in domestic photovoltaic plants coupled with
battery storage. The �ndings suggest that the option of storing energy via batteries
increases investment value and managerial �exibility, encouraging households to invest
in larger photovoltaic systems.

Another recently published study [66] shows the challenges of high initial costs, un-
certain future expenses, and in�ation rates. The study proposes using RO valuation
the Least Square Monte Carlo Simulation to evaluate residential photovoltaic investment
decisions in Turkey. Comparing the traditional NPV method with the RO approach, it
is demonstrated that while NPV deems the investment infeasible, the RO approach with
the Least Squares Monte Carlo method supports it by considering future uncertainties
and providing cost-e�ective options, thus highlighting potential government incentives
for promoting solar energy generation in Turkey.

Martinez et al. [58] are proposing a ROs methodology for the assessment of domestic
photovoltaic systems, which takes into account the expected evolution of photovoltaic
technologies and the option to delay investment. The results of the case studies suggest
that an RO's convenience to defer investments is mainly in�uenced by the time value
of money, the type of loan, and the forecasts. Through the utilization of ROs to defer
investments, domestic photovoltaic projects tend to experience an increase in economic
value across the majority of studied scenarios in this paper.

In Tian et al. [79], a RO approach to assess the investment value of photovoltaic power
generation in a carbon market-linked context is developed, considering uncertainties and
market co-movements. The study �nds a negative investment value in the case of Dun-
huang, recommending either postponing or abandoning the investment unless conditions
improve, while also suggesting potential enhancements through technical improvements
and increased subsidy payments.

Kim et al. [44] are proposing a framework for determining the appropriate level of
government subsidy for private entities to install clean energy systems using a ROs anal-
ysis. The framework considers factors such as greenhouse gas emission trading, life cycle
costs, socioeconomic and political factors. A case study was conducted in Seoul, Korea,
to verify the proposed method, which involved the installation of a photovoltaic system
in an average-sized household. The �ndings suggest that the proposed framework could
help policymakers choose the proper level of government subsidy that will e�ectively
encourage private entities to install clean energy systems.

These case studies demonstrate the practical application and bene�ts of using ROs in
energy investment decision-making in the residential energy sector. For approaches in
the residential energy sector, there is a huge focus on photovoltaic systems but no holistic
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analysis of building or household related technologies, especially considering the heating
sector. Furthermore, is has been showcased how ROs can provide valuable insights into
optimal system sizing, the role of storage options, consideration of future uncertainties,
the role of policy assessments and the evaluation of investment viability in dynamic
market environments.

Used Method for the Evaluation Locatelli et al. [53] developed a simple to implement
method to value investments in the energy sector. The method is based on simulating
several scenarios and creating so-called "exercise thresholds". An exercise threshold gives
the investor the right to make a decision. An exercise threshold is therefore a rule to
decide whether to exercise or not a certain option on the basis of the values of one or more
state variables. Using state variables and exercise thresholds, the probability distribution
of the NPV can be calculated. By using this method, the value of the ROs and relevant
indications, such as when and in what type of technology to invest, can be determined.
This enables decision-makers to assess the value of ROs and make informed choices about
when and in what type of technology to invest, most importantly, having a tool to value
the risk of waiting to initiate an investment. The method is still relatively new but
has already been applied in Biggins et al. [16] to assess whether it is worth waiting to
invest in a polymer electrolyte membrane electrolyser for hydrogen production in a wind
farm and how much value this investment adds to the wind farm. The �ndings indicate
that contemplating the option to wait not only enhances the expected mean value of the
electrolyser investment but also reduces the likelihood of encountering scenarios where
the returns are negative.

2.4 Transformation Paths of Buildings

The Federal Ministry for Economic A�airs and Climate Action of Germany developed
four di�erent long-term scenarios and strategies for the expansion of renewable energies
in Germany until 2045 [74]. In order to represent the spectrum of possible transforma-
tion paths for the energy system as comprehensively as possible, various target scenarios
are being modeled. Four main scenarios with di�erent focuses are developed: "T45-
Electricity", "T45-Hydrogen", "T-45-PowerToGas" and "T-45-RedE�" The technologi-
cal composition of the transformation pathways is shown in Figure 2.2.
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Figure 2.2: Long term scenarios for the energy supply of buildings based on [74].

Upon assessment, it is evident that the sector's target is being met, and that the
ambitious objective of achieving a 65 % share of renewable energy by 2024 is on track.
Achieving the 2030 targets is projected to be exceptionally challenging in all scenarios
except for T45-electricity. Notably, the installation of hybrid heat pumps is expected to
be limited to the time frame between 2024 and 2030. Additionally, the availability of
biomass is scarce and will undergo signi�cant reductions.

Furthermore, the study's �ndings highlight several key points. Firstly, regardless of the
scenario considered, there is a pressing need to almost triple the number of connections
in the district heating system. Moreover, there is a notable and substantial expansion of
heat pumps across all scenarios.
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Based on these �ndings, several conclusions can be drawn. It is crucial to maximize
e�ciency, along with a robust expansion of heat pumps and the development of extensive
district heating networks. These factors are deemed essential for achieving the goals and
targets outlined in the scenarios. The transition towards a sustainable energy system
can be facilitated through a focus on high e�ciency and the widespread adoption of heat
pumps and district heating

According to the �ndings of this study, heat pumps can be considered as the sole
investment option for heat sources. The future of hydrogen in the building sector is
challenging to estimate, leading to uncertain in�uence. Solar thermal experiences a
signi�cant decrease in all scenarios or is not invested in new solar thermal plants, making
it unnecessary to consider these two energy technologies. Other studies forecast similar
transformation paths, in [31] the structure of heat generators is composed of 70 % heat
pumps, 14 % district heating, 10 % biomass and 4 % solar thermal.
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3 Theoretical Framework

In this chapter, the methodology of this thesis will be presented. The steps to comprehend
the methodology are shown in 3.1 and will be explained in the subsequent sections.

First, the energy system model's structure and the parameters of the technologies used
for this case are presented. This is followed by the presentation of the underlying cost
functions and required parameters to calculate the investment value for each technology.
Uncertainties, such as electricity and gas prices for households, are simulated using a
Geometric Brownian Motion. After establishing the fundamentals, the actual algorithm,
a Monte-Carlo simulation with exercise thresholds, is presented and explained in detail.
By applying the used algorithm, it is possible to calculate the distribution of the means
and the standard deviation and make investment decisions based on that.

The algorithm employed in this thesis is derived from the work of Locatelli et al. [53],
who developed it for use cases in the energy sector. The authors applied the concept for
the evaluation of power plants; in the present case, this methodology is applied to the
evaluation of technologies in the residential energy sector.

This algorithm was chosen for its simplicity of implementation and ease of compre-
hension compared to other available methods. Often, as discussed in the introduction,
the application of RO in the energy sector struggles to get implemented because there
is a lack of understanding of the approach. By employing this method, one can mitigate
such impediments, presenting it as a simpler approach compared to other methods, thus
facilitating the user's comprehension.

Figure 3.1: Flowchart illustrating the methodological structure of the thesis.
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3.1 Con�guration of the Examined Building

Figure 3.2 shows the structure of the energy system model. The energy system model is
structured into the following parts:

ˆ Surplus Electricity (1): This represents the excess electricity generated by the
photovoltaic system, beyond what the building requires for its own consumption.
Homeowners receive remuneration for this surplus electricity based on the size of the
photovoltaic system, as determined by the Feed-in Tari� set under the Renewable
Energy Sources Act.

ˆ Purchased Electricity (2): This is the amount of electricity obtained from the
network operator.

ˆ Heat Pump (3) and Hot Water Tank (4): These are used to supply the building
with heat. Instantaneous water heaters are employed for providing drinking hot
water. The necessary electricity for these systems can be sourced from the grid,
the photovoltaic system, or the battery storage system.

ˆ Heat Demand (5): This indicates the amount of heat required by the building.

ˆ Battery Storage System (6): It stores the surplus electricity generated by the pho-
tovoltaic system. When there is a demand, this stored electricity is utilized to cover
the requirement.

ˆ Natural Gas Boiler (7): This is an alternative method to supply heat to the building.

ˆ Building Electricity Demand: Similar to (8), this represents the required amount
of electricity for the building, which can be sourced from the grid, the photovoltaic
system, or the battery storage system.

ˆ Photovoltaic System Output (9): This shows the amount of energy generated by
the photovoltaic system.

ˆ Amount of Natural gas: The natural gas used to run the boiler comes from (10).
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Figure 3.2: Schematic structure of the energy system model.

The energy system model is implemented using the TransiEnt Libary [5]. The Tran-
siEnt Library is a library implemented in the Modelica language for the simulation of
coupled energy networks with a high share of renewable energies. The parameters to
be determined are building-speci�c, technology-speci�c, and parameters used to deter-
mine the costs incurred by the investments. The parameters are partly based on own
calculations and partly the data is taken from the data sheets of the reference building
DE.N.MFH.08.Gen [4], the building represents a typical German apartment building,
build in the 90s. The building load pro�les used in the work were created using the
District Generator. The district generator is a Python tool for creating building-speci�c
heat, electricity and occupancy pro�les for residential areas [2].

Building Parameters The used parameters of the reference building are shown in Table
3.1. Heat and electricity demands will di�er, depending on which technology option
is getting examined. The refurbishment level of one, describes a partially refurbished
building.

Table 3.1: Parameters of the building
Building Parameters
Main Usage of Building Living
Year of Construction 1989
Location Potsdam
Used Area 778,1m2

Refurbishment Level Usual Refurbishment [4]
Demands
Heat demand 39.286 kWh/a
Electricity demand 21.780 kWh/a
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Technology Parameters This work examines three di�erent technologies as investment
options, the gas boiler serves as a reference investment for the system containing a heat
pump. The investment value gained by delaying the timing of investments and incor-
porating the following technologies: photovoltaic system, heat pump, and battery, will
be analyzed. Additionally, the combination of a photovoltaic system and a battery will
be assessed since investing in a battery is deemed reasonable when investing in a pho-
tovoltaic system. Furthermore, the stand-alone performance of photovoltaic and heat
pump systems will be investigated, along with photovoltaic and heat pump as a com-
bination and the integration of all three named technologies. When a heat pump is
utilized, the hot water tank becomes part of the system. It is assumed in this work that
all technologies are designed for drinking water heating through an instantaneous water
heater. The most signi�cant parameters for the energy system model are presented in
Table 3.2.

Table 3.2: Parameters of the examined technologies.
System Parameter Value
Gas Boiler Capacity 60 kW

Boiler E�ciency 1.05
Calori�c Value of Natural Gas 40 MJ/kg

Heat Pump
Nominal heat �ow of the heat pump at
nominal conditions according to EN14511

13kW

Anual Performance Factor 2.4
Nominal electrical power of the backup heater 14.5 kW
E�ciency of the backup heater 0.95
Heat pump supply temperature 50°C

Storage Maximum/Minimum storage temperature 50/45°C
Volume of the storage 1.788m3

Photovoltaic Capacity 20.8 kWp
Tilt 0 °
Azimuth 35°

Battery Storage System Electrical Storage Capacity 20.8 kWh

3.2 Cost Parameters

To evaluate the NPV of the technologies, several parameters need to be considered be-
fore performing the calculation, such as the initial capital expenditure (CAPEX) , the
maintenance costs (MC) and the lifetime of each technology. Additionally, the discount
rate plays a crucial role in the NPV calculation. The discount rate is used to discount
future costs and bene�ts to their present value. It re�ects the time value of money and
accounts for in�ation and opportunity costs. For reasons of simplicity, the discount rate
is assumed to be 5 %, for all technology options.

Cost Parameters Photovoltaic Table 3.3 shows possible ways to determine CAPEX
and MC values for photovoltaic systems. The lifetime of photovoltaic systems is approx-
imately 25 years [15].
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Table 3.3: Cost functions for photovoltaic systems.
Cost Parameters Photovoltaic

Capex
Developed a function to determine the speci�c investment costsk:
k = 1 :518e =kW � P � 0:05065 where P equals the installed photovoltaic-capacity

2018 - [14]

Another function for smaller photovoltaic systems in the range of 2-20kW:
k = 2889; 5(e =kW) � P � 0;16 where P equals the installed photovoltaic-capacity

2019 - [13]

In this study, the prices for 19561 photovoltaic systems are examined from
2011 to 2022. From the data obtained, price ranges and mean values of the
costs for the corresponding plant size can be derived.
The mean speci�c investment costs 2022 were 1392e /kW

2023 - [47]

MC
[14] also developed values for the operational costs:
10 e /kW for maintenance costs, 40e =a for other variable costs for
example meter rent and up to 60e /a for insurance

2018 - [14]

[13] developed this function to determine the annually operational costs:
b = 148e (+21e if P > 8kW ) + 5 e � P

2018 - [13]

Cost Parameters Heat pump The lifetime of air heat pumps usually ranges between
15-25 years [26, 33]. In [64], the following equation to determine the CAPEX costs for
heat pumps is developed:

CAPEX heatpump = 4591; 7 � P0:6532 (3.1)

A maintenance cost of 1 % of the CAPEX costs is applied, which aligns with the range
chosen by Greif [76]. The operation of the heat pump includes a hot water tank, and an
electric instantaneous water heater is integrated into the system to ensure a continuous
supply of heat to the building when the heat pump's capacity is insu�cient. Since the
instantaneous water heater is often included in the price of the heat pump, the costs of it
will not be added separately. For the hot water tank, a regression equation is formed with
the price data of a manufacturer [1], to determine the price for the underlying system, an
insulation of the tank of the e�ciency class B is assumed. This results in the following
equation:

CAPEX hotwatertank = 1 :13� V � 11:23 (3.2)

where V is the volume of the tank in liters.

Cost Parameters Battery Storage The lifetime of battery storage systems is typically
observed to be around 15 years, as referenced in the study by Kost et al. (2013) [22].
For this thesis, the focus is on the cost of a lithium-ion battery. Regarding the CAPEX
costs for lithium-ion batteries, the costs can vary based on the size of the systems.
Existing sources suggest that CAPEX typically falls within the range of 500 - 1200
¿ /kWh [35, 41, 75]. According to Sensfuÿ [75], the MC for battery storage systems
is negligible for photovoltaic systems below 30 kWp and therefore are not taken into
consideration.

Cost Parameters Gas Boiler In the study conducted by Streblow et al. [77], it is
indicated that the MC account for 3 % of the investment cost. The same paper presents
the following formula to calculate the CAPEX cost.:

CAPEX gasboiler = 61:17(e =kW) � P + 4794(e =kW) (3.3)
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3.3 Technological Learning E�ects

Since the RO approach enables the option to invest in the future is mandatory to also
determine the cost developments of the determined technologies. Learning curves provide
a method to analyze cost development over time, indicating that industrially produced
good costs decrease by a constant percentage with each cumulative doubling of volume
[69]. This relationship was �rst described by Wright et al. [85] in 1936, using the example
of the aircraft industry.

Di�erent technologies show distinct learning curves, leading to varied developments in
investment costs. For instance, when the number of produced units doubles and costs
decrease by 20 %, the learning rate is considered to be 20 %. By incorporating these
learning curves into the analysis, a better understanding of how the selected technologies
change over time is obtained. This is a crucial factor in making informed decisions within
the RO framework. This relationship can be expressed by the following equations [32, 85]:

C(x t ) = C(x0)(
x t

x0
) � b (3.4)

and

LR = 1 � 2� b (3.5)

where, the relationship between the quantity x t produced at time t, the cost C(x t )
compared to the output quantity at reference point x0 and the corresponding costsC(x0)
and the learning parameterb. When Equation 3.5 is rearranged to express variableb,
and subsequently inserted into Equation 3.4, the resulting logarithmically decreasing cost
function is derived for each respective technology. The speci�c investment costs for the
used technologies, as shown in Figure 3.3, are determined by adjusting the learning rates
to the underlying case. The corresponding initial values or investment values at time
t = 0 are obtained using the previously developed cost function and building data.

Learning rates for photovoltaic systems vary signi�cantly in published studies. To
establish a representative value, an average learning rate of 23 % is determined according
to Rubin et al. [70]. Other studies report learning rates within a range of 15-23 %
[73, 75, 42]. Considering the age of the data, a learning rate of 10 % is applied for
photovoltaic systems.

For residential energy systems, studies report varying learning rates for lithium-ion
batteries. Schmidt et al. [73] determine a learning rate of12 � 4%, while Lowe and
Drummond [56] suggest a rate of10%. Mauler et al. [60] review several studies published
after 2015, which indicate learning rates falling within the range of 15-21 %. In this study,
a learning rate of 10 % is utilized. The decision is based on the consideration that the
studies referenced are a few years old, and the price development starts from the present,
suggesting the application of a slightly lower learning rate.

The literature on learning rates for heat pumps is sparse, leading to limited available
data for accurate estimation. Due to this data limitation, it is best to be cautious
and conservative in determining the learning rate for heat pumps. By comparing the
available data with other technologies, a suitable approach is to set the learning rate for
heat pumps at 10 %. This choice aligns with the observed learning rates of the other two
technologies.

Figure 3.3 shows the price development of the speci�c investment cost for each technol-
ogy, considering the discussed learning rates. For calculating the most recently developed
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cost functions are taken: 1200e /kW for photovoltaic systems [47], for heat pumps 1100
e /kW [64], battery storage systems with 800e /kW, for the natural gas boiler and the
hot water tank prices are expected to remain constant, since both technologies are al-
ready very established and only very limited technological changes are to be expected.
In addition, this also takes into account the e�ect that subsidies, especially for the gas
boiler, will not take place if the federal government sticks to its current plans for the
energy transition. For the gas boiler and the hot water tank, the respective speci�c
investment costs of 140e /kW and 1150 e / m3 are used for the following analyses.

Figure 3.3: Development of the invest cost with the discussed Learning Rates (LR) from
2023 to 2050.

3.4 Modelling and Development of Energy Prices

In the following sections, an overview of the energy market's development will be pre-
sented to create a reasonably accurate model for the uncertain variables: electricity and
gas prices for household consumers. Energy prices are known to be volatile and subject
to �uctuations, as evidenced by recent events such as the Ukraine war and the resulting
supply shortages, and the COVID 19 pandemic.

To model the energy prices, the method of choice is the Geometric Brownian Mo-
tion (GBM). The GBM is the most common stochastic process used to model price
uncertainties in renewable energy applications. It provides �exibility in capturing both
mean-reverting and trending behaviors observed in electricity and gas markets. Draw-
backs and why this method is suitable for the underlying case will be discussed after the
derivation of the method.

3.4.1 Modeling of the Energy Price Trends

The GBM is a stochastic process commonly used to model the price movements of assets,
including energy prices, such as stocks, commodities, and currencies. When referring to
the "spot price", it denotes the current price for household energy. This term is commonly
used in �nancial markets. The derivation is founded upon the derivation presented in
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[38]. The di�erential equation for this model is:

dPt = �P t dt + �P t dWt (3.6)

where dPt is the change in the spot price fromt to t + dt, � describes the drift and �
the volatility of the energy prices, dWt is the increment of a standard Wiener process,
so dWt � N (0;

p
dt). The two terms of the equation consist of the drift term �P t dt and

the stochastic term �P t dWt . Both the drift and stochastic terms are proportional to the
spot price level at time t. By increasing the stochastic and the drift term, the range of
possible price movements will also increase. When the drift term is higher, the price will
go up more quickly with each step. To induce a decrease in price, the drift term can be
assigned a negative value:� < 0.

By considering a logarithmic function x t = ln P(t) for the price and applying Ito's
Lemma to x t , the following equation is obtained:

dxt = ( � �
� 2

2
dt) + �dW t (3.7)

By solving this equation for x t the spot price Pt at time t can be determined, whereP0

is the starting spot price at t = 0 .

Pt = P0e(( � � � 2

2 t )+ �W t ) (3.8)

The variable Wt is a normally distributed random variable with a mean of zero and a
variance of t.

One limitation of this approach is that it does not account for the variation in energy
prices throughout the day. Additionally, the GBM follows a log-normal distribution,
which may not fully re�ect energy prices' tendency for mean-reversion, spikes, and jumps
[72]. However, it has been argued that these e�ects can be ignored when considering long-
term planning investments and the GBM does not lead to signi�cant errors [51, 34], if
electricity spot prices for short-term planning are relevant for the model, another method
or a combination of those must be chosen [38, 10].

3.4.2 Development of the Energy Household Prices

To model the evolving energy prices using the previously shown method, assumptions
about the volatility and drift of the prices are necessary. The war in the Ukraine and
the resulting changes in the framework conditions for Germany's energy supply have led
to a massive peak in electricity prices in the energy market, and therefore for increased
household prices for electricity and gas. These conditions also impacted the prices for
household consumers, with both electricity and gas prices increasing by almost double,
as seen in 3.4.
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Figure 3.4: Energy Price Development in Households from 2012 until 2023.

Depending on the scenario, the Institute of Energy Economics at the University of
Cologne [3] assumes that electricity prices will fall to their pre-war level by 2026. Once
electricity prices are back on their pre-war level, they will grow by a small amount each
year. To model this using a GBM, two consecutive processes are performed. The �rst,
until 2026, with a strong downward drift with a negative value for � . Then, a smaller
positive value for � is chosen to represent the gradual increase over time. The same
process is used for the modeling of natural gas prices. First the prices will decrease to
pre-war level, afterwards they are assumed to increase again. The signi�cant di�erence
between these two is that the gas prices have a stronger upwards drift, due to the increased
pricing of greenhouse gases. [7, 78, 3, 64]. Figure 3.5 shows the possible development
of the gas and electricity prices. In the work, the price trends developed in the studies
are used. As shown in the �gure, the price driver, especially for natural gas, is theCO2
pricing as speci�ed in the Fuel Emissions Trading Act.

Figure 3.5: Schematic energy price developments based on the studies conducted by the
BMWK [78] and the German Heat Pump Association (BWP) [64].
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3.5 Cash Flow Valuation

For the evaluation of how much value the option to wait brings to an investment, equation
3.10 is introduced. The option to invest delays the investment until more information
about the market and technological conditions is available. In this work two cases need
to be considered:

If the option is to invest in a photovoltaic system, or a photovoltaic system including
battery storage, only the investment into components of those systems is considered. On
the contrary, no investment into any technology will be made, the electricity will still be
taken from the grid. The term CAPEX ref will be neglected in these cases. The contrary
system is from this point on referred to as the reference system.

To get a realistic case, that allows the evaluation of systems containing a heat pump,
both CAPEX terms of NPVAIV need to be considered. In other words, the reference
system, of the systems containing a heat pump as a technology option,CAPEX ref needs
to be taken into account.

The value we receive when applying these concepts for our use cases is calledNPVAIV

where AIV stands for Added Investment Value. This equation, which evaluates the
added value of delaying the investment, will be explained step by step, considering the
underlying assumptions and distinctions between the di�erent cases.

NPVAIV =
CAPEX j

ref

(1 + DR ) j �
CAPEX j

tech

(1 + DR ) j +
lifetimeX

t=1

�
OPEX j + t ref
(1 + DR ) j + t �

OPEX j + t tech
(1 + DR ) j + t

�

(3.9)
Using an example to gain a deeper understanding of this concept, the discount rate
(1 + DR ) j can be neglected. By assuming that the investment in a heat pump costs 20
monetary units and the investment in a new gas boiler costs 5 monetary units. But by
using the heat pump only 2 monetary units are needed to satisfy the energy demand,
instead of 4 monetary units when using the boiler. Assuming a lifetime of 8 years. The
equation would look like this:

NPVAIV = 5 � 20| {z }
=-15

+
lifetimeX

t=8

32� 16| {z }
=16

(3.10)

It becomes evident, that once the CAPEX terms exceed the OPEX terms, investing
in the heat pump system becomes bene�cial. The OPEX term increases annually due to
energy and cost savings achieved through the heat pump, leading to a positiveNPVAIV

after approximately 8 years.
By deferring the investment, for instance 5 years, the monetary units might be at 5

investing into the boiler. The energy saving per year would increase by one, which would
lead to a higher value ofNPVAIV after 8 years.

This example shows,how theoption of waiting can increase the investment value in
the underlying case.

OPEX Term The OPEX term in equation 3.10 includes the operational and mainte-
nance costs of a system. In this work, it contains the maintenance costs (as described
in the previous section) and yearly energy costs, expressed as Net Energy Costs (NEC).
The general expression of the OPEX term in this work is as follows:
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Table 3.4: Equations to calculate the Net Energy Costs for all of the respective technolo-
gies.

Equation NEC of the Technologies NEC of the Reference Technology
NEC pv E t

imp P t
e � E t

expPFIT E t
imp P t

e
NEC t

pv&battery E t
imp P t

e � E t
expPFIT E t

imp P t
e

NEC t
hp E t

imp P t
e E t

imp P t
e + Qt

imp P t
g

NEC t
hp&pv E t

imp P t
e � E t

expPFIT E t
imp P t

e + Qt
imp P t

g

NEC t
hp&pv E t

imp P t
e � E t

expPFIT E t
imp P t

e + Qt
imp P t

g

OPEX =
NEC j + t + MC

(1 + DR ) j + t (3.11)

whereMC represents the maintenance costs,j denotes the point in year in which the
investment has been executed and the variablet is the number of periods over which the
OPEX costs are discounted,t equals the lifetime of the respective technology.

The calculation of NEC depends on the respective technology options. For instance,
investing in a standalone photovoltaic system, the heat demand of the building is unaf-
fected, so there is no need to invest into a natural gas boiler. The required electricity
will be drawn from the grid.

In Table 3.4, the provided equations can be found for the calculation of the NECs.
In this context, E t

imp (kWh/a) describes the electricity utilized to satisfy the demand
of the building, while Qt

imp (kWh/a) denotes the amount of heat used for the supply
of the building. The household prices for gas and electricityP t

g and P t
e (¿ /kWh) are

taken as the state variables of the considered systems, displaying the given uncertainty
of the household prices. The NECs are calculated for every price trajectory. Addition-
ally, the Feed-in Tarif (FiT) must be considered for all technology options containing a
photovoltaic system. The FiT represents the payments received for exporting the surplus
electricity to the grid and is denoted asPF IT (¿ /kWh).

When the power generated by the photovoltaic system exceeds the building's electricity
demand, there are several options, how this surplus electricity can be used: storing the
surplus energy in the battery storage system, feeding it into the grid and obtaining the
FiT, or utilizing it in the heat pump. Combining these options of utilizing the surplus
electricity is possible. For all systems using a photovoltaic system, the term� E t

expPFIT

is incorporated. This term represents the monetary compensation received by the house
owner for exporting surplus electricity back to the grid.

Both the photovoltaic system with and without the battery can employ the same
equations to calculate the NEC. Notably, the heat demand of the building is not in�u-
enced by the investment, as it exclusively impacts the electricity consumption, the type
and amount of heat supply remains the same. Therefore, the heat consumption for the
reference case can be neglected.

In all cases where heat pumps are used, the gas supply to the building is stopped, and
the heat supply to the building depends entirely on electricity. In the scenario where
only a heat pump is used in a standalone system, electricity is drawn from the grid to
satisfy both heat and electricity demands. As the heat pump impacts both electricity
and heat demands, it must be compared to the NEC costs of electricity and gas from the
reference system.
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At this stage, one might assume that the results are comparable, since the equations
for the di�erent technologies and reference systems have great similarities. However,
the inclusion of battery storage systems in the building results in a more favorable self-
consumption rate, leading to reduced power consumption from the grid. Similarly, the
utilization of both photovoltaic and a heat pump yields cost improvements compared
to using only a heat pump. This is because surplus electricity that would otherwise be
exported to the grid can now be directly employed. For a comprehensive assessment of
the cost distribution associated with each combination, a detailed breakdown of the NEC
is provided in Figure 3.6.

Figure 3.6: Net Energy Costs of the Technologies

CAPEX Term The CAPEX Term consists of two main elementsCAPEX j
tech , refers

to the CAPEX of the respective technology option, while j is the year in which the
investment is performed. If j increases the CAPEX value decreases as described in
Section 3.3. Similarly, this principle applies to the reference system's CAPEX, denoted as
CAPEX j

ref. The term including the CAPEX costs of both technologies can be expressed
as:

CAPEX Term =
CAPEX j

ref

(1 + DR ) j �
CAPEX j

tech

(1 + DR ) j (3.12)

The exception to the change in this term occurs when investing exclusively in a photo-
voltaic system, which has no impact on the heat in�ow and out�ow of the building. In the
reference case, where electricity is exclusively drawn from the grid, no additional invest-
ment is necessary. Thus, in such situations,CAPEX j

ref equals zero, since no investment
into a gas boiler is performed, resulting in the following equation:

CAPEX Term = �
CAPEX j

tech

(1 + DR ) j (3.13)

Crucial assumptions The crucial assumptions made in the last sections, on the way to
the equation of NPVAIV , and the ones that did not get mentioned, will be named now:
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ˆ The calculation of the CAPEX and OPEX costs got discussed in Section 3.2. The
CAPEX values of the technology options will decrease, due to the technological
learning e�ects, while the assigned MC stay constant over time.

ˆ The time horizon, in which the investment decision is going to be made, is set to
15 years. At that point more recent information about the developments of the
energy prices, but also the CAPEX values should be available.

ˆ The assumption is made that the lifetime of the technology option is equivalent to
the one of the compared reference system. To have a comparability of the systems,
the lifetime is assumed to be 20 years across all systems.

ˆ The discount rate is 5 % in the whole work.

ˆ The natural gas boiler is never examined as a stand-alone system and is only taken
as a reference system, for all systems containing a heat pump.

ˆ The used values of the demands of the building, and the used and generated energy
of all technologies remain the same at each point of observation.

ˆ Seasonal e�ects are not considered, because the opportunity to perform investment
decisions only occurs once a year and there is also a long observation period, that
is why the e�ects are negligible.

ˆ Surplus energy generated by the photovoltaic system will always be imported into
the grid with a �xed price 8,2 ct/kWh which displays the current compensation for
photovoltaic system for the next 20 years [84].

ˆ The degradation of performance is neglected for all studied systems.

3.6 Real Option Analysis

3.6.1 Single State Variable

Locatelli et al. [53] proposed a method that utilizes exercise thresholds to determine
when to make an investment. According to the authors, this method involves de�ning
an interval of exercise thresholds and using Monte Carlo simulations to calculate the
probability distributions of NPV for each threshold. For each distribution, the mean
NPV and the standard deviation is calculated. By analyzing these NPV probability
distributions, the threshold that o�ers the best distribution in terms of mean NPV,
minimum standard deviation, and other relevant criteria can be selected.

In this work, three investment options are explored: investing in a photovoltaic system,
a heat pump, or battery storage. The available options for the investor are to invest
(immediate investment), deferring the investment decision (waiting), or abandoning the
project. Figure 3.7 illustrates the structure of the implemented algorithm.

In this context, the exercise threshold depends on two state variables: the electricity
price pe and the gas pricepg. The term "state variables" refers to variables that describe
the stochastic process in the Monte Carlo simulation. These variables are used to model
uncertainties of the model. To gain a better understanding, the method is initially
explained using a single state variable, before implementing both thresholds: "single
state" and "two or more states."
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Figure 3.7: Flow chart showing the programming structure of the implemented algorithm.
Based on [53, 16].
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The method will be further explained using an example, where investing into a pho-
tovoltaic system in combination with a battery storage system will be considered. The
applicable state variable in this case is the electricity pricepe:

1. Starting with de�ning an interval of p�
e. It is important to choose a lower value for

the lower bound than the initial electricity price P0. For the higher bound a value
that its unlikely to ever be reached must be chosen. For instance, in this example,
a threshold range ofp�

e = (20 ; 80) ct/kWh is chosen.

2. The condition for an investment to get triggered equalspe � p�
e

3. Calculate the NPV probability distribution for every price trajectory, starting from
p�

e = 20 ct/kWh continuing until the threshold of p�
e = 80 ct/kWh is reached. In

this example, 100 Monte Carlo simulations are conducted.

4. For each of those simulations, the relevant indicators, the mean and the standard
deviation of the NPV are calculated. For each simulation, the three available
options are considered. If the investment is triggered by the state variable reaching
the threshold value, the decision makerinvests . If the threshold is not reached in
the �rst year, the process is repeated every year, until the threshold is reached, using
the wait option. If the threshold is not reached, the investment isabandoned ,
which is re�ected in the valuation of the results in a mean NPV of zero.

5. Finally, the mean and standard deviation of the NPV is calculated for each thresh-
old, allowing appropriate investment decisions to be derived from the analysis.

If the electricity consumption decreases compared to the grid, high electricity prices
are favorable for a photovoltaic system. In this case, less electricity needs to be bought
from the grid due to the self-consumption of the installed photovoltaic system. Therefore,
the condition for when to invest in the respective system is set as:pe � p�

e, re�ecting the
favorable scenario where electricity prices exceed a certain threshold value.

Figure 3.8, shows the distribution of the mean and standard deviation of the NPV, for
each threshold value. The plot can be separated in three areas: "Invest Immediately",
"Increased Value by waiting" and "Never invest", which will be discussed in detail now:

1. First, the "Invest Immediately" condition, with a prede�ned exercise threshold of
pe � p�

e, is always satis�ed when the electricity price is below or equal to the
starting price P0, meaning that every price trajectory meets this condition today.
The mean and standard deviation of the NPV of today will be calculated at this
point, which is equivalent to a traditional DCF approach of evaluating investments.

2. Secondly, the values that are a�ected by waiting for the threshold values and in-
creasing the value of the investment can be seen. This is the e�ect of the option
to wait. When waiting for a certain threshold there is a gain in value by waiting
for the investment, with the downside that at the �rst step for values greater than
35, there is only an investment probability of 50 %. The other 50 % of trajectories
never reach the de�ned threshold value, and therefore no investment is performed.
For values greater than48 ct/kWh there is a decrease in the investment value when
comparing it to the DCF value. The number of investments made at that speci�c
threshold is so low that the investments not taken, along with the NPV being zero,
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contribute to a decrease in the value of the option to wait. The following conclu-
sions can be drawn from the standard deviation plot: The higher the increased
value of the mean NPV, the higher the risk (displayed as the standard deviation),
but since the revenue is also higher, for this case it should be recommended to
invest for the threshold with the highest mean NPV. Because the mean NPV is
bigger than the standard deviation, and therefore the investment will always be
positive, which is not the case if the investment is performed today.

3. Lastly, for thresholds greater than 60 ct/kWh, very few state variables reach the
threshold value. As a result, either no more investments are triggered, or the
number of thresholds that satisfy the condition is too small, leading to a large
share of mean NPVs being terminated with no investment value (i.e. an NPV of
zero).

After the RO analysis with exercise thresholds, the investor can use the mean and
standard deviation of the NPV �ndings to decide: invest now, wait, or abandon the
project. Furthermore, depending on the ideas of the investor, a particular threshold
value can be chosen: a high mean NPV is connected to a high standard deviation and
therefore a high risk, a lower mean NPV leads to a lower standard deviation and therefore
a lower risk. Another possible case would be there is no improvement in waiting for a
later point in time. In these cases it is recommended to invest immediately if the mean
NPV exceeds zero.
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Figure 3.8: Mean and Standard Deviation of the NPV distribution for each Threshold.
Using a photovoltaic system in combination with a battery storage system,
with a single state variable as an example.

3.6.2 Two or more State Variables

The analysis can also be conducted for two state variables, which is necessary in the
underlying case. It is essential for cases in which, the gas and electricity price, in�uence
the pro�tability of the investment. For two state variables, the exercise threshold consists
of a pair of thresholds(p�

e; p�
g).

Rising electricity prices negatively a�ect the heat pump usage due to the overall in-
creasing electricity demand of the building. This is in contrast to the technology options
only investing into a photovoltaic system, where the situation is the opposite. High gas
prices, on the other hand, are advantageous for investment into the heat pump, because
it increases the NEC of the reference system. Therefore, the following condition can be
set for two thresholds: pe � p�

e and pg � p�
g. For every combination of exercise thresholds

there is a di�erent NPV probability distribution. The steps to determine the distribu-
tion are the following: As an exemplary system, a heat pump in combination with a
photovoltaic system is chosen:

1. De�nition of the threshold ranges, in which the exercise thresholds can occur. For
electricity for values between 20 < p �

e < 70 ct/kWh and for gas 5 < p �
g < 20

ct/kWh.

2. Divide the intervals into all possible threshold variations. In this case with a step
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Figure 3.9: Schematic representation of when an investment decision is triggered by two
state variables

size of the threshold of one:(p�
e; p�

g) = f (20; 5); (20; 6) : : : (21; 5); (21; 6) : : : (70; 20)g,
creating a total of 750 pairs of threshold values.

3. The next steps are analogous to the single state variable analysis. For each thresh-
old pair, the corresponding NPV probability distributions across all simulated price
trajectories are generated. In the underlying example, 100 Monte Carlo simulations
are employed.

4. From each NPV probability distribution, the mean and standard deviation of the
NPV is recorded, allowing appropriate investment decisions to be derived from the
analysis.

The described method is illustrated in Figure 3.9. Once both threshold conditions are
met, the NPV is calculated, and if the added value by the investment is greater than zero,
an investment is triggered. This process is repeated for every energy price trajectory
and for every time step for each pair of threshold values. Figure 3.10, shows how to
evaluate the results. The main di�erence in the evaluation of multiple thresholds is the
placement of the described zones. The results are now three-dimensional, containing the
gas threshold, electricity threshold, and either the mean NPV or the standard deviation.
Similar to the evaluation with one threshold, three areas can be obtained: "Immediate
Invest," "Improvement Zone," and "Never Invest". The zone of interest for the investor
is "Improved Mean NPV and standard deviation" as it provides relevant information on
how much value can be gained by delaying the investment and whether the risk increases
or decreases.
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Figure 3.10: Mean and Standard Deviation of the NPV distribution for each Threshold.
Using a system that combines a heat pump with a photovoltaic system, with
two state variables as an example.

3.7 Statistical Methods

To evaluate the results the mean values, the standard deviation and the investment
probability of the NPVs need to be calculated.

Mean Net Present Value The mean NPV is the central metric for determining the
expected pro�tability of the investment. It is calculated by summing the NPV over all
simulations and dividing it by the number of scenarios. This process is repeated for each
prede�ned threshold, the mathematical expression for which is:

Mean of NPVi =
1
ni

n iX

j =1

NPVij (3.14)

where Mean of NPVi represents the mean NPV for the i-th threshold value,ni is the
total number of simulations and NPVij represents the NPV of the j-th scenario for the
i-th threshold value.

Standard Deviation of the NPV The standard deviation of the NPV measures the
dispersion of the NPVs around the calculated mean NPV. It indicates the degree of
volatility. A high standard deviation suggests high uncertainties and therefore high risks,
while a low standard deviation less volatility and a lower risk. The standard deviation
for each threshold looks like this:

Standard Deviation of NPVi =

vu
u
t 1

ni

n iX

j =1

(NPVij � MeanNPVi )2 (3.15)

Investment Probability The investment probability displays the possible investments
that are triggered in the range of a certain threshold. The investment probability ranges
from 0 to 1, where 0 indicates no investments have been triggered, and 1 indicates there
is always an investment taking place. The probability can be expressed as:

30



FH MÜNSTER EGU Enno Tchorz

IP � =
Number of Price Trajectories where an Investment is Triggered

Total Number of Price Trajectories
(3.16)

Flexibility Value The di�erence of the extended net present value and the traditional
net present value de�nes the �exibility value [50]. The extended net present value is the
obtained project value when performing the RO analysis and expresses the value gained
from waiting for investment. The mathematical expression is:

Flexibility Value = NPVRO � NPVDCF (3.17)

where NPVRO is the NPV of the RO approach, andNPVDCF the NPV of the DCF
method.
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4 Results

The systematic approach of the algorithm was developed and explained in the preced-
ing chapter 3. This methodology will now be implemented, and the outcomes will be
presented in the following sections.

Furthermore, section 4.2 will encompass the uncertainties associated with this study,
including the consideration of gas and electricity prices, and the approach adopted to
model them. Additionally, this section will investigate the process of selecting simulation
parameters and their impact on the obtained results.

Graphical presentations of the calculated results, based on the inputs presented earlier,
will be provided in section 4.3.

A sensitivity analysis will be conducted in section 4.4 to demonstrate the impact of
di�erent price trajectories on the observed trends.

4.1 Representation and Explanation of the used Parameters

In this section, the key inputs utilized to perform the calculation of NPVAIV are pre-
sented.

Parameters of the Energy System Model The values for the calculation of the NECs
are derived from the outputs generated by the used energy system model, as shown in
Table 4.1. All values in the table are represented in kWh/a. The parameters utilized as
inputs for the energy system model to obtain these values were presented in Table 3.2.

Figure 4.1, displays the annual energy demands for each technology option derived
from the energy system model's outputs. The �gure highlights the electricity and heat
consumption patterns for the used technology options and the reference option.

Table 4.1: Data for the net energy cost calculation.
Electricity demand Heat demand Electricity export PV generated

Reference 21780.3 39286.6 0 0
Heat pump 38032.6 0 0 0
PV 14857.3 39286.6 8981.4 14350
PV+Battery 12611.7 39286.6 6047.3 14350
PV+Heat pump 30079.7 0 6717.0 14350
PV+Battery+Heat pump 27781.1 0 3831.4 14350
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Figure 4.1: Energy demands for all technologies and their respective combinations.

Financial Parameters In this section, the �nancial parameters used in this work will be
discussed, starting with the CAPEX values for the used technology options, as illustrated
in Figure 4.2. The technology options considered are photovoltaic, heat pump, battery
storage, their respective combinations, and the reference system, i.e., the gas boiler. All
technology options have been considered, and it is observed that the gas boiler stands
out as the system with the lowest CAPEX costs. However, it is anticipated that the
other systems have lower NEC, so they become more pro�table at one point.

Figure 4.2: Development of the CAPEX costs for all variations. A discussed learning
rate of 10 % has been added to the trajectories of all technologies.

Next, the �nal OPEX values will be presented, comprising the NECs and MCs. The
corresponding results are shown in Figure 4.3. For the photovoltaic systems, there are
maintenance costs of 248e . The heat pump incurs maintenance costs of 180e , and the
gas boiler requires maintenance costs that amount to 255e . As discussed in section 3.2,
the battery storage system does not entail any maintenance costs.
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Figure 4.3: Development of the OPEX costs for all variations.

Finally, the remaining �nancial parameters inputted into the model are the FiT, the
discount rate, the lifetime of technologies, and the learning rates. The values of these
parameters were previously discussed and are presented again here for completeness. A
FiT of 0.08 ct/kWh is assumed, which remains constant over time. The discount rate is
set to 5 %. The lifetime of all systems is assumed to be 20 years. The period in which
the investment can be made is 15 years.

4.2 Uncertainty Parameter Evaluation

To model the uncertainties in gas and electricity prices for households, a GBM is utilized.
The GBM equation, developed to display the respective uncertainties, is expressed as
follows:

Pt = P0e(( � � � 2

2 t )+ �W t ) (4.1)

Adequate values for the volatility and the drift term need to be chosen to get indicative
results. Additionally, the number of simulations conducted signi�cantly in�uences the
outcomes. Another important factor is choosing the interval space and step size for the
exercise thresholds. As there are currently only two available studies in the literature,
namely Locatelli et al. [53]. and Biggins et al. [16], which employ a similar RO approach,
it is crucial to prioritize the determination process of the mentioned parameters before
proceeding with the presentation of the use cases. The parameters for a single state vari-
able, the electricity price, will be developed for the photovoltaic and photovoltaic system
including a battery storage system. Starting with the volatility of the uncertainties,
denoted as� .

4.2.1 Volatility of the Prices

The volatility in the underlying case can be calculated by taking historic values of the
electricity price for households. Either by determining the volatility before the energy
prices increased from 2021, and have rather a conservative approach, or by determining
the volatility until today. In Table 4.2 the respective volatilities calculated in that way are
presented. It is important to note that there are two options for determining the volatility:
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Table 4.2: Change in Volatility's in the studies that performed a similar analysis and the
underlying case.

Value for �
For Electricity Prices
from 2012-2021

0.02

For Electricity Prices
from 2012- 2023

0.06

For Electricity Market
Prices in Locatelli [53]

0.30

For Hydrogen Market
Prices in Biggins [16]

0.15

Table 4.3: Parameters to be validated.
Simulation Parameters
Number of Simulations 250
Threshold Range (0; 150)
Number of Thresholds 150

either the volatility can be calculated before the energy prices increased from 2021, taking
a conservative approach, or it can be calculated up until today. The volatilities for these
cases are calculated based on the data in [28]. Additionally, the values used in Biggins and
Locatelli for the volatilities are added, to put the values chosen in this work into context.
Throughout the analysis, the parameters used in these two papers will be referenced
repeatedly to explain why parameters of the same order of magnitude are not suitable
for the underlying case and to justify the parametrization of the simulation.

Figure 4.4 illustrates the di�erences in the implementation of various volatility values
for the photovoltaic option. Similarly, Figure 4.5 shows the di�erences between the
photovoltaic and battery storage option. The starting values of the simulations are shown
in Table 4.3, they will be continuously developed throughout the parameter evaluation
to then form the �nal simulation parameters.
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Figure 4.4: Mean and Standard Deviation (Std) distribution over the prede�ned range
of Threshold. For photovoltaic as a stand-alone system.

Figure 4.5: Distribution of mean and standard deviation (Std) over the prede�ned range
of the threshold value. For photovoltaic in conjunction with a battery storage
system.

The following indications can be gained from the plots, to determine the uncertainty
parameters for the underlying case, starting with the plot for the photovoltaic system:
The range of possible prices, when choosing a high volatility, like in Biggings or Locatelli,
leads to prices that are very unlikely to ever be reached. Opting for one of the suggested
volatilities within the range of 0:02 � 0:06 seems more reasonable. Only in one case,
choosing to wait before investing in another photovoltaic option leads to the possibility
of a higher mean NPV. In all other cases the recommendation would be to invest immedi-
ately, since no value can be gained by waiting. For the photovoltaic and battery storage
options, the mean NPV is increasing by waiting for the threshold to trigger the invest-

36



FH MÜNSTER EGU Enno Tchorz

ment. The following conclusion can be drawn from this: The higher the volatility chosen
by the investor, the more likely the option to wait will bring value to the investment.

Additionally, it can be observed that the range of the thresholds needs adjustment in
further analysis. In the case of� = 0.02, there are only four instances where the NPV
distribution includes results between the DCF value, the "Immediate investing" scenario,
and the "Never Investing" scenario, where the threshold value is consistently greater than
the state variable.

Therefore, the next step involves adjusting the number of thresholds and their range.
The volatilities utilized in Biggins and Locatelli will be excluded as they have been
demonstrated to be unsuitable for this speci�c case.

4.2.2 Range of Thresholds and Number of Simulations

To select the appropriate threshold parameters, a similar analysis to the previous one
is conducted by varying the values. The range of relevant values could be obtained in
Figure 4.4 and 4.5, therefore it is possible to de�ne a realistic interval of (20;60)¿ /kWh.
The application is limited to a sigma value of� = 0.02, as it has been demonstrated to be
the most sensitive case due to its minimal occurrence of values. As the number of values
between the scenarios of always investing and never investing decreases, the likelihood
of overlooking potential gains that may arise from waiting for the investment to grow in
value increases. By exploring four distinct step sizes for the intervals, commencing from
1 and progressively halving in subsequent steps.

Additionally, the variable � j is introduced, to represent the count of thresholds as-
sociated with scenarios of "Immediate investing" or "Never Investing", j represents the
number of thresholds used in the de�ned range. The results of this can be seen in Figure
4.6. The analysis reveals a clear linear relationship between� and the growth in thresh-
olds. When the thresholds double in value,� also doubles accordingly. Moreover, the
�ndings indicate that the results remain relatively stable, and there is no e�ect on the
curves of mean NPVs and standard deviations. By employing a step size of� P = 0 :5, a
satisfactory level of accuracy is achieved by still maintaining a reasonable computation
time.
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Figure 4.6: Change of the step size� P and its in�uence of the simulation results.

To �nd a reasonable amount of simulations, with the beforehand determined threshold
range, number of thresholds, and volatilities, the impact of the number of simulations
on the results is examined. Choosing an increasing number of simulations, as shown in
Figure 4.7. The results demonstrate signi�cant volatility when employing less than 100
simulations. To ensure more reliable and stable outcomes, the decision has been made
to develop 1000 price trajectories using the GBM.
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Figure 4.7: In�uence of the number of simulations on the results.

The �nal parameters for simulating the uncertainties of technology options are now
chosen. The examination involved observing the in�uence of di�erent parameters on
the results. The remaining aspect is to consider the price developments for the next
5 years, with prognoses indicating a decrease in prices around 2025. This condition is
demonstrated through two successive GBM simulations by selecting a negative value for
� 1, representing the drift of the price trajectories.

Until now, only electricity prices were considered in the investigation of systems with
a heat pump investment. However, in such cases, it is necessary to factor in not only gas
prices but also electricity prices. The knowledge gathered for electricity prices is utilized
to derive the simulation parameters for the combination of electricity and gas prices.

To model the increase of energy prices, the pre-war level volatility for electricity is
adopted as� elec = 0 :06. Similarly, the same approach is applied to determine the value
of � gas = 0 :05 [28], leading to the same step size of� P = 0 :5. The relevant parameters
are shown in Table 4.4. The variables not previously introduced includeT, representing
the number of years the prices trajectories are generated, with one price change generated
for each year,P0 denotes the initial price of the GBM.

The �nal results of the simulation are shown in Figure 4.8
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(a) (b)

Figure 4.8: a) shows the GBM for the electricity prices with the discussed simulation
parameters b.) Shows the equivalent, but for the gas prices.

Table 4.4: Final Simulations Parameters, for the GBM, and the Real Options Analysis.
Parameters GBM-Electricity GBM-Gas
P0 35 12
� 0.06 0.05
� 1; � 2 -0.05, 0.01 -0.05, 0.02
T1; T2 3, 37 3, 37

Single State Variable Two State Variables
Threshold Range p�

e(20 : 60) p�
g(5; 25) and p�

e(20 : 60)
Nsim 1000 500
� P 0.5 0.5
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4.3 Results of the Simulations

In the following section, the results of the analysis of the case studies are presented,
providing insights into the variations across the di�erent scenarios by examining the
mean and standard deviations of the NPV for various threshold values.

The "single state variable" method is applied for two di�erent con�gurations: the
photovoltaic system as a standalone system and the photovoltaic system with an added
battery.

Additionally, the e�ects on systems with "two state variables" are explored, by con-
sidering the photovoltaic systems with an added heat pump and the heat pump as a
standalone system. To support the decision-making of investors applying this method,
plots have been developed, allowing for the selection of threshold values based on in-
dividual requirements. The optimal threshold value should ideally exhibit a favorable
mean NPV along with a low standard deviation. Additionally, for the evaluation of the
results, the parameters average waiting time and the �exibility value are introduced.

Furthermore, a sensitivity analysis is conducted to assess the impact of market condi-
tions and technical factors on the results. This analysis aims to determine the magnitude
of these in�uences and provide a comprehensive understanding of the dynamics at play.

By analyzing these scenarios, a comprehensive understanding of how threshold values
impact the NPV and risk associated with the investment can be gained. These �ndings
will provide valuable guidance for decision-making in optimizing investment strategies
and risk management in the context of residential energy technologies. In addition, the
�ndings can be used to determine whether this method is suitable, and enhances the
investment valuation of residential energy technologies. The sensitivity analysis should
provide valuable insights into the in�uence of market and technical conditions on invest-
ment outcomes, improving the understanding of the broader context of opportunities for
investing in technologies used in the residential energy sector.

4.3.1 Photovoltaic

In this section, the results and �ndings for the photovoltaic system are presented. It will
be explored how the systems performance varies under di�erent threshold values and
their potential to generate improved �nancial returns.

Figure 4.9 illustrates the in�uence of the threshold value, denoted asp�
e, on the in-

vestment value. For the photovoltaic system, it is evident that the "exercise thresholds"
method, or the use of ROs, does not enhance the system's value. Interestingly, the invest-
ment value decreases when the decision-maker chooses to wait for a speci�c threshold
value. Investing in a photovoltaic system immediately is economically more advanta-
geous than waiting for a speci�c threshold value. The waiting option does not provide
an economic advantage in the case of photovoltaic as a stand-alone system.

Figure 4.10, shows the optimal threshold, which in this work is always the mean NPV
that brings the largest of the NPV improvement, p�

e;pv, the most pro�table threshold
value, equals 35 ct/kWh in this case. This value equals our initial electricity price and
suggests investing immediately.

4.3.2 Photovoltaic and Battery storage

The second system, incorporating photovoltaic and battery storage, demonstrates a no-
ticeable improvement in mean NPV. The option to wait for a higher price improves the

41



FH MÜNSTER EGU Enno Tchorz

Figure 4.9: Impact of the threshold on the mean and standard deviation of the NPV for
the photovoltaic system.

Figure 4.10: Distribution of mean and standard deviation (for photovoltaic as a stan-
dalone system) and the "exercise threshold"p�

e = 35ct=kWh that leads to
the highest mean NPV
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Figure 4.11: Impact of the threshold on the mean and standard deviation of the NPV for
the photovoltaic system, in combination with a battery storage system.

value of investing into this option.
Moreover, the DCF value is negative when the waiting option is not considered. This

would result in no investment in this system, even if the system has a positive mean NPV
when the waiting option is used.

It can be observed that the standard deviation of the parameters evaluating the risk of
the investment increases at the same time. This increases the possibility of an unfavorable
investment. In summary, a higher NPV can be achieved by the waiting option, under
the premise of higher risk. Figure 4.11,

Figure 4.12 displays the optimal threshold value of(p�
e : 35:5). This value indicates

that once the actual electricity price surpasses this value, an investment, results in an
increase of the NPV of the project.

4.3.3 Heat Pump

In Figure 4.13, the results for the heat pump scenario are presented. The system is con-
sidered as a stand-alone system, with two state variables: the gas and electricity prices,
and their respective distribution for each threshold pair. The plot illustrates two main
aspects. Firstly, it is evident that outside the DCF-Zone (representing values outside of
"investing today"), there is potential for improvement in the achieved mean NPV. This
suggests that there are scenarios in which using the option to wait, for values that are
outside of this zone, yields higher returns. Secondly, compared to the investigated sin-
gle threshold systems, an improvement in the standard deviation and therefore lowering
the risk of the investment can be obtained. This leads to a lower risk than investing
immediately, as a more diverse range of outcomes is observed.

When considering Figure 4.14, the optimal threshold values of(p:
e29:0;p:

g12:5) are
showcased, which are leading to the highest mean NPV. However, it's noteworthy that
this optimal value is not the most likely to occur, as most of the threshold pairs still
result in a negative mean NPV. While the immediate investment would lead to a negative
project value, by waiting for the named optimal threshold, the project value is getting
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Figure 4.12: Distribution of mean and standard deviation (for photovoltaic and battery
storage) and the "exercise threshold"p�

e = 35:5ct=kWh that leads to the
highest mean NPV.

positive.

Figure 4.13: Heat map of the results for the heat pump system. Showing the mean and
standard deviation of the mean, and the investment probability.
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Figure 4.14: Distribution of mean and standard deviation (for heat pump as a stand-
alone system) and the "exercise threshold"p�

e = 29:0;p�
g = 12:5 that leads

to the highest mean NPV.

4.3.4 Photovoltaic and Heat Pump

In Figure 4.15, the combined performance of the photovoltaic and heat pump system is
illustrated. While the immediate investment would lead to a negative project value, by
waiting for the named optimal threshold, the project value is getting positive.

Figure 4.16 showcases the optimal threshold value pair of(p:
e45:5;p:

g12:5), which cor-
responds to the highest mean NPV. It is important to note that although this threshold
pair maximizes the mean NPV, it may not be the most likely to occur among all threshold
combinations.

Figure 4.15: Heat map of the results for the heat pump in combination with a photo-
voltaic system. Showing the mean and standard deviation of the mean, and
the investment probability.
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