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A B S T R A C T   

The Electricity Supply Chain is a system of enabling procedures to optimize processes ranging from production to 
transportation and consumption of electricity. The proportion of distributed energy sources within the electricity 
system increases steadily, which necessitates an improved monitoring capability to ensure the overall reliability 
and quality of the Electricity Supply Chain. Automation is strongly required to process the growing amount of 
data. Thus, it is inevitable to handle large amounts of heterogeneous data and process the information using 
forecasting and optimization techniques. Artificial Intelligence techniques are crucial for extending human 
cognitive abilities in these tasks. In our work, we synthesize the main impacts of the Artificial Intelligence 
paradigm on the automation of the Electricity Supply Chain. We describe the emerging automation through 
Artificial Intelligence in every layer of the Smart Grid Architecture Model and highlight state-of-the-art ap-
proaches. In the review, we focus on the following Electricity Supply Chain functionalities: generation, main-
tenance, pre-processing, analysis, forecasting, optimization, and trading within energy systems. After 
investigating the individual perspectives, we examine the potential implementation of a fully automated Elec-
tricity Supply Chain. Lastly, we discuss perspectives and limitations for the transformation from conventional to 
automated Electricity Supply Chains, specifically in terms of human interaction, Artificial Intelligence adapta-
tion, energy transition, and sustainability.   

1. Introduction 

The increasing number of local energy sources connected to the 
utility grid, such as individual photovoltaic (PV) systems, necessitates 
automated control to ensure a reliable and efficient electricity supply. 
The digitalization of the Electricity Supply Chain (ESC) is being accel-
erated to provide infrastructure supporting control automation in terms 
of collection, communication, and treatment of information for the 
increasing number of energy agents like prosumers. Based on the Smart 
Grid Architecture Model (SGAM) [1], ESC includes the following do-
mains of electricity: generation incl. Distributed Energy Resources 
(DER), consumption, transmission and distribution as well as its trading. 
Each of these domains has become more complex through digitization, 
resulting in a growing demand to support grid operators and electricity 
traders. This requirement can be accomplished by automating infor-
mation treatment and associated decision-making processes, which 
particularly rely on Artificial Intelligence (AI) techniques. 

In this regard, AI is a collective term, which combines tools to sub-
stitute the need for human cognitive ability [2] including machine 
perception and Machine Learning (ML) procedures. AI can be used in 
ESC automation because of its ability to handle large amounts of data 
which are often heterogeneous and of varying quality. Furthermore, AI 
is capable to identify complex patterns or relationships and hardly re-
quires potentially limited pre-processing [2]. While AI aids in data 
analysis and interpretation, it does not replace human intervention 
entirely. Considering the inability of AI to generalize multiple tasks, 
specific problems require a specific implementation and appropriate 
control mechanisms. In addition, ML algorithms are often black box 
models with limited potential for understanding and control of their 
deviations. AI applications requiring large input data sets are also 
known to be prone to overfitting. Nevertheless, review articles on the 
application of AI for energy sector automation in specific energy topics 
such as energy building efficiency [5] and energy economics [4] have 
been published in recent years. In addition, other researchers examined 
the adaptation of the ESC for AI in the context of electrical grid 
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challenges to adopt automation [6] and intelligent processes [7]. 
Furthermore, Cheng et al. [8] presented a paper on AI evolution and 
taxonomy, which introduced a new generation of AI, illustrated with 
Smart Grid (SG) applications. Here, we intend to synthesize the main 
impacts of AI for the specific processes inside ESC and discuss how AI 
might extend the possibilities of electrical sector automation. In this 
work, the focus is set on various AI approaches solving different tasks in 
ESC to give perspectives for entire automation of ESC. We cover their 
specific limitations as well as a necessary development to achieve an 
optimal and sustainable energy supply. The specific focus of this review 
lies in the fields of generation, maintenance, analysis, forecasting, 
management, and trading within electrical systems as well as the 
respective interaction between them to automate the distinct tasks but 
also the entire ESC. The term “energy” is essentially referring to its 
electrical aspect in this work. 

The paper is organized as follows: Section 2 introduces AI methods 
that are principally used within the electricity sector. Then, a detailed 
description of specific AI algorithms is provided in Section 3 to solve 
various distinct tasks in ESC based on the layers of the SGAM [9] (see 
Fig. 1 in Section 3). In Section 3.6, the combination of the distinct tasks 
is discussed to create a full automated ESC. Finally, Section 4 discusses 
perspectives and challenges for an entirely automized ESC. In this 
context, an outlook of the evolution of AI implementations related to 
ESC and the new possibilities of human interactions are given. 
AI-specific effects on energy sustainability, resilience and transition are 
described as well. 

2. Methods 

This section gives an overview of the most common AI techniques 
used in the energy sector. At first, we present a short history of AI and 
define shallow learning techniques like Random Forest (RF) or K- 
Nearest Neighbors (KNN) commonly used in energy applications. Given 
that Deep Learning (DL) techniques became increasingly relevant, we 
briefly define them in Section 2.3 and discuss possible impacts. In Sec-
tion 2.4, we examine the Deep Reinforcement Learning (DRL) approach, 
which is a specific application approach playing an important role in 
automatizing energy processes of DL. Finally, we consider Generative 

Adversarial Networks (GANs) and Genetic Algorithms (GA) procedures 
due to their expected role in the future electricity system and introduce 
them in Sections 2.5 and 2.6, respectively. 

2.1. Artificial Intelligence: context and definitions 

While the discipline of AI has existed for some decades now, there is 
still no commonly accepted definition of AI. In the following, we 
consider the AI definition of the Oxford Dictionary: “the theory and 
development of computer systems able to perform tasks normally 
requiring human intelligence, such as visual perception, speech recog-
nition, decision-making, and translation between languages".1 From 
1950 to the 1980s, the dominant paradigm of AI was the symbolic one. 
With symbolic AI, rules are defined that allow conclusions to be made 
from the input. Until the mid-1980s, domain experts agreed that with a 
sufficiently large set of rules, AI could be brought up to human cognitive 
levels [10]. However, symbolic AI reached its limits for very complex 
tasks such as image recognition, image generation, speech, and text 
recognition. Consequently, the field of ML gained major importance as a 
sub-field of AI and was defined as “the study of computer algorithms that 
improve automatically through experience” [10]. In the area of ML, 
supervised, unsupervised, semi-supervised, and Reinforcement Learning 
(RL) can be distinguished. While labeled data is necessary for supervised 
learning, no labels are required in unsupervised learning. In 
semi-supervised learning, a mix of labeled and unlabeled data is used for 
model training. Finally, the goal of RL (see Section 2.4) is to learn a 
strategy that maximizes a pre-defined quantity. Within the field of ML, 
DL approaches, especially Neural Networks (NNs) gain in popularity. 
NNs can be used to learn representations of the input data through 
backpropagation [11]. This automatic feature learning is the basis of DL 
(see Section 2.3), where the parameters of multiple sequential layers are 
learned to represent given data. Nevertheless, if only one representation 
layer is used in NNs, we speak of shallow learning (see Section 2.2). 

List of abbreviations 

AI Artificial Intelligence 
ARIMA(X) Autoregressive Integrated Moving Average (with 

eXogenous variable) 
AutoML Automatic Machine Learning 
BPSO Binary Particle Swarm Optimization 
CMV Cloud Movement Vectors 
DA Day-Ahead 
DER Distributed Energy Resources 
DL Deep Learning 
DNN Deep Neural Network 
DP Dynamic Programming 
DRL Deep Reinforcement Learning 
EA Electricity Access 
ED Electricity Demand 
EG Electricity Generation 
EMS Energy Management System 
EP Evolutionary Programming 
EPF Electricity Price Forecast 
ES Electricity Storage 
ESC Electricity Supply Chain 
GA Genetic Algorithm 
GAN Generative Adversarial Network 

GBM Gradient Boosting Machine 
ID Intraday 
IP Integer Programming 
KNN K-Nearest Neighbors 
LR Lagrangian Relaxation 
LSTM Long Short-Term Memory 
MILP Mixed-Integer Linear Programming 
MIP Mixed-Integer Programming 
ML Machine Learning 
MOS Model Output Statistics 
NN Neural Network 
NWP Numerical Weather Prediction 
PSO Particle Swarm Optimization 
PV Photovoltaic 
ReLU Rectified Linear Unit 
RES Renewable Energy Sources 
RF Random Forest 
RL Reinforcement Learning 
SG Smart Grid 
SGAM Smart Grid Architecture Model 
SVM Support Vector Machine 
UCP Unit Commitment Problem 
XAI Explainable AI 
XGB XGBoost  

1 https://www.oxfordreference.com/view/10.1093/oi/authority.20110803 
095426960. 
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2.2. Shallow learning 

In contrast to DL, shallow learning uses only one representation 
layer. Typical methods established in the energy sector are discussed 
below. 

Support Vector Machine (SVM). For solving linear and non-linear 
problems, regression and classification of time series as well as for 
outlier detection, SVMs have been proven to be very powerful [12]. SVM 
defines decision boundaries as hyperplanes so that the training data is 
separated as optimally as possible according to its class affiliation. It was 
found that SVMs were very well suited in practice for the classification of 
complex small to medium-sized data sets [12]. In general, SVMs are 
popular and frequently used in the energy system, e.g., for condition 
monitoring of wind turbines [13] and fault diagnostics of hydropower 
plants [14]. 

Gradient Boosting Machine (GBM) and XGBoost (XGB). Some of the 
most common boosting algorithms [15] nowadays are GBM [16] and 
XGB [17]. The idea of boosting algorithms is to use an ensemble of weak 
models to build a stronger model [15]. Designed to be “efficient, flexible 
and portable” [17], XGB improves GBM from an algorithmic point of 
view by enhancing regularization, weighted quantile sketching, and 
sparsity-aware splitting. In the last years, XGB has become one of the 
leading benchmark techniques for ML. Due to its good performance in 
classification and regression, it is suited for a broad range of applica-
tions, which could soon reach the energy sector. 

RF. By combining a set of weak decision trees to an ensemble 
method, a strong classification or regression model, a so-called RF was 
proposed by Leo Breiman [18]. Each decision tree is trained on boot-
strapped samples of the training data. For regression tasks, the final 
prediction is yielded by the average of the predictions of all trees. For 
classification tasks, the final class is found by a majority vote of the 
predicted classes. Regarding the energy sector, RFs were already applied 
within the literature [19,20]. 

KNN. As a lazy learner, the modeling of a KNN method takes place 
only at the time of the classification or regression request. The output of 
the request is simply based on the k-closest training examples. For 
regression, the average of these k-nearest neighbors is then taken as a 
value. For classification, the class with the most votes, i.e., under the 
KNN, is then selected. 

2.3. Deep Learning 

NNs are algorithms that can approximate a non-linear function based 
on the given input data. They have the advantage that complex relations 
can be parameterized through the number of neurons, the used 

activation function, and the propagation function. The difference be-
tween shallow NNs to Deep NNs (DNNs) is characterized by the depth of 
the network. DL is specifically defined by using more than two hidden 
layers. The goal of DL is to learn sequential layers for more complex data 
representations [9]. Next to the availability of large amounts of data and 
improved hardware, three decisive algorithmic enhancements were 
presented in 2009 and 2010 that enable the training of DNNs [9]:  

1. The use of the Rectified Linear Unit (ReLU) [21] activation function 
and its further developments that increase the stability of training.  

2. Improved initialization functions, like Xavier initialization [22] and 
He initialization [23].  

3. Improved Optimizers like Adam [24] and RMSProb [25]. 

Regularization techniques like dropout [26] and batch normalization 
[27] have further improved the stability of training DNNs. Dropout is a 
regularization technique that reduces overfitting by not considering a 
certain number of neurons within each layer for a training step [26]. 
Thus, forcing the network to create more generalized solutions, which 
are hardly dependent on specific neurons. In terms of the batch 
normalization, overfitting is reduced through normalizing the output of 
each layer using the batch mean and the batch standard deviation. In the 
energy sector, time series forecasts are of special interest wherein Long 
Short-Term Memory (LSTM) networks are particularly suitable. 
LSTM-NNs are a special type of NNs [28] that can capture long-term 
dependencies. Recently, new methods for time series forecasting, such 
as DeepAR [29], were presented, which have achieved very good results 
for time series forecasts. Due to the increasing need for forecasting in the 
energy system, we expect that DL will become a crucial tool. In partic-
ular, its combination with RL is of great interest for automatizing the 
energy system. 

2.4. Deep Reinforcement Learning 

RL is a field of ML in which an agent is trained in an environment to 
maximize a defined expected cumulative reward [30], e.g., an electricity 
trader on the electricity exchange market. The latter is evaluated on the 
agent’s performed actions, e.g., holding, buying, or selling electricity, in 
the environment. The overall performance measure of RL is the 
consecutive reward, e.g., profit/loss in electricity trading. Accordingly, 
the idea of RL is to learn by interacting with the environment and 
adapting to it in a goal-oriented way. In 2015, RL was successfully 
combined with DNNs for the first time [31] through two improvements: 
(i) the introduction of a replay memory that stored agent experiences as 
a basis for learning, so that training data is less correlated; (ii) the 

Fig. 1. Structure of Section 3 based on SGAM [9].  
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separation into a target model for the evaluation of the agent’s actions 
and an online model for the choice of actions that stabilized the training. 
Moreover, an important technique called prioritized experience replay 
was proposed in Ref. [32], also known as importance sampling. Instead 
of drawing experiences from memory with equal probability, important 
experiences are drawn from memory with a higher probability. 
Currently, the state-of-the-art RL methods used are Rainbow [33] (a 
combination of six different RL techniques) and Proximal Policy Opti-
mization [34]. For energy systems, RL is of great interest as it can make a 
significant contribution to their automation in term of grid protection, 
energy management, and automatic energy trading. Possible applica-
tions of RL are discussed further in Section 3. 

2.5. Generative adversarial network 

A GAN is a generative model, which is “described (in terms of 
probabilistic models) how a dataset is created” [35]. It consists of two 
NNs, i.e., the generator and the discriminator, which have opposing 
optimization targets. The discriminator aims to detect whether the data 
set is real or fake. The goal of the generator is, in contrast, to produce 
fake data sets, which are undetectable for the discriminator. For this 
purpose, the generator takes as input a random vector, such as a 
Gaussian noise vector, and produces new data, e.g., an image, audio, 
text, or a time series. As the objectives of the generator and the 
discriminator are contrary, the two networks are trained separately. 
Since their invention in 2014, GANs have become very popular and are 
considered as one of the most important inventions in the field of DL in 
the last 20 years. For a comprehensive overview of GANs and their 
variants, we refer to Ref. [36]. Possible applications of GANs in the 
energy sector are the implementation of wind and solar data [37], but 
also the generation of new time series data with specific properties [38]. 
In this context, GANs can be used to automatically build additional 
training data for other models but also to detect anomalous time series 
inserted by man-in-the-middle attacks or produced by erroneous mea-
surement or production/generation equipment. 

2.6. Genetic Algorithms 

A GA is a procedure inspired by evolutionary theory, where the 
fittest individuals are chosen for reproduction. The basic idea is that 
through the interaction of modification and selection of better-suited 
individuals, good approximate solutions can be found for given prob-
lems [39]. GAs generally start with a randomly selected and evaluated 
population in which each individual represents a possible solution to the 
problem. Then, the following cycle is repeated until a termination 
condition is fulfilled [39]: (i) selection of individuals for recombination, 
(ii) recombination of the characteristics of these selected individuals to 
descendants, (iii) random mutation of the descendants’ characteristics, 
(iv) evaluation of the mutated descendants and (v) determination of the 
next generation. GAs play an important role in the energy industry and 
are widely used, e.g., to solve the unit commit problem (see Section 
3.4.2) and for automating the energy production (see Section 3.1.1). 

3. Electricity Supply Chain automation and Artificial 
Intelligence 

The major contribution of this paper is the presentation and discus-
sion of the potential improvements of the different distinct parts of the 
ESC based on AI but also the potential implementation for an automated 
ESC by combining these distinct tasks using several AI techniques. The 
structure of this section follows SGAM [8] as shown in Fig. 1 because it 
assigns different related tasks to a certain layer. 

We begin our analysis of the ESC in Section 3.1, starting at the 
component and communication layer. These layers cover the electricity 
production in different generation units (RES and conventional units), 
the predictive maintenance of various components, and the prevention 

of cyber-attacks. In Section 3.2, we analyze different methods like pre- 
processing of data transferred from the component layer via the commu-
nication layer to the information layer. In conjunction with a knowledge- 
based system, data analysis and data transformation techniques are 
proposed to extract important information as well as to find and opti-
mize the most suitable forecast method. Anomaly detection and sub-
stitute value formation are central within the entire process chain 
ensuring valid data esp. for AI methods. Thereafter, we analyze the 
function layer in detail. In Section 3.3, methods for time-series forecasts 
are discussed, whereas the optimal solution of the unit commitment 
problem (UCP) based on the forecasted time series is addressed in Sec-
tion 3.4. In Section 3.5, we focus on the methods of the business layer. 
These aim at increasing the economic benefit using flexibilities gained 
from the optimization in the previous layer. In this work, we primarily 
focus on different methods concerning Electricity Price Forecast (EPF) 
and energy trading strategies. Finally, the findings of the previous sec-
tions are aggregated into a fully automated ESC combining the distinct 
tasks of the individual layers. For this purpose, we discuss the necessities 
and implications that arise from the integration in Section 3.6. 

3.1. Components & communication - energy access 

As shown in Fig. 2, this section is focused on the services at the 
component and communication layer. The most crucial functions of the 
component layer have no links to the distributed parts of the SG. Thus, 
cyber-attacks are prevented by using separate networks. However, to set 
up a smart data-based system, it is necessary to connect different 
distributed parts via the communication layer. Some services are 
considered in Section 3.1.3, which can be improved by using AI con-
cepts. Starting with the initial stage of the ESC, we describe the impact of 
AI on Electricity Access (EA). Here, EA refers to the energy generation 
and its distribution as well as its management through information 
communication infrastructure at the component level. Also, the 
following paragraphs report the support provided by AI automation for 
efficient energy production, health monitoring of EA, and its metering 
relying on information communication. The main impacts of AI on EA 
are also synthesized in Table 1. 

3.1.1. Automation of electricity production 
Before producing electricity, AI can assist the design process of 

generation systems to ensure their optimal usage, where clustering was 
employed to maximize the yearly solar cell production through dimen-
sion reduction of the spectral characteristics [40]. Furthermore, the 
design and sizing of the local electrical grid for Renewable Energy 
Sources (RES) can be automated, e.g., for wind farms using GA [41]. The 
production control of hazardous energy sources like nuclear plants can 
also benefit from AI automation. Indeed, NNs were able to model nu-
clear generation regarding heat and flow transfers [42,43]. Similarly, 
the management of highly variable RES like wind farms can be improved 
by NNs better predicting their performances [44]. Beyond energy gen-
eration modeling, the definition of control policies can be automated as 
well, e.g., a fuzzy NN method was proposed to control hydraulic turbines 
[45]. Furthermore, C. Keerthisinghe et al. showed that NN techniques 
were comparably efficient to Dynamic Programming (DP) [46]. In their 
work, they performed a policy function approximation to the use-case of 
PV storage energy management. More generally, for optimal power flow 
management of DER, a data-driven procedure was based on a multiple 
stepwise linear regression to learn DER-specific control policies [47]. 
Finally, the automation of energy production operations was performed 
for simplification and optimization purposes as well as environmental 
ones. For example, NNs and GAs were applied to model and predict gas 
emissions from coal-fired power plants to automate human supervision 
[48]. 

3.1.2. Health monitoring for fault detection and predictive maintenance 
Energy production processes can be subject to dangerous situations 
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since generation and distribution operations might lead to material, 
economic, and human risks. As a preventive measure, AI techniques 
have been developed to monitor the health of generation systems. 
Probabilistic NN classifiers were proposed for fault detection and clas-
sification in PV systems [49,50]. For wind turbines, Stetco et al. 
described NNs and SVMs as being common techniques for their condi-
tion monitoring [13]. For example, DNNs have been used for turbines 
fault detection [51]. Moreover, condition and fault diagnostics of hy-
dropower plants were performed using SVM classifiers [14]. Lastly, 

thermal power plant monitoring was achieved by DL applied to remote 
sensing images [52] and fault detection by SVMs [53] and NNs [54]. 
Transporting the produced energy, the associated distribution devices 
can also be damaged and require monitoring. The fault diagnosis of 
power transformers in electrical substations was realized with a KNN 
cumulative voting approach [55]. Additionally, predictive maintenance 
to prevent power substations failure was obtained by a NN algorithm 
applied to thermal images [56]. Concerning electricity delivery lines, 
locations of faults were determined by NNs [57] and SVMs [58]. 
Furthermore, ML delivers information about fault location and types of 
power lines [2]. The state recognition of isolating switches can also be 
supported by AI using SVMs to evaluate their high-voltage condition 
[59]. 

3.1.3. Communication infrastructure supported by Artificial Intelligence 
Supporting EA, AI requires a strong communication infrastructure to 

gather data from the energy system sensors and metering devices. To 
face this demand, intelligent communications were proposed like the 
cognitive radio enabling optimal usage of the available spectrum re-
sources for wireless operations. This wireless communication was 
automated with all categories of ML techniques to ensure adaptive 
learning and decision making [60,61]. Based on information commu-
nication, SG systems are exposed to cyber-attacks which can be active 
like the injection of false data, or passive, if data confidentiality is 
affected. Against active attacks, a k-means clustering algorithm was used 
to identify anomalies within normal data traffic of an SG [62]. More-
over, an online NN algorithm was proposed to detect malicious voltage 
control actions [63]. To uncover both active and passive attacks, Prasad 

Fig. 2. Component and communication layer of SGAM [9] including the discussed use cases improved by using AI and the respective AI methods.  

Table 1 
Summary of AI automation impacts on EA.  

Domain Impact of AI Main 
techniques 

Energy production  - Ensure continuous and autonomous 
optimal energy generation.  

- Allow automated management of 
hazardous/highly variable energy 
sources.  

- Define local control strategies. 

NNs, GAs 

Predictive 
maintenance  

- Ongoing and autonomous monitoring of 
local energy generation devices.  

- Continual and autonomous monitoring 
of energy distribution elements. 

NNs, SVMs, 
KNN 

Communication 
infrastructure  

- Optimal wireless spectrum usage.  
- Protection against active and passive 

cyber-attacks.  
- Communication infrastructure 

reduction. 

NNs, SVMs, 
GAs  
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et al. employed an ML boosting approach [64]. Ahmed et al. [65] pro-
pose a combination of GAs and SVMs while indicating that the obtained 
results depend on system size. Indeed, the performances of ML tech-
niques to detect cyber-attacks are not homogeneous and depend on the 
system dimensions as well as the associated available data [66]. Lastly, 
due to the high cost of developing the infrastructure, AI starts to be 
employed as an alternative to extending system automation with only 
minimal communication. In this regard, ML methods, i.e., SVM algo-
rithms, were proposed to compute control strategies, which rely only on 
historical data and allow local management of DER without communi-
cation needs [67]. 

3.2. Information - data pre-processing, anomaly detection, and analysis 

The data-handling methods of the information layer (see Fig. 3) 
include data preprocessing, anomaly detection, and data analysis. These 
methods are crucial for appropriate data modeling. To enhance the 
automation of the ESC based on ML, reliable data models are necessary 
to prevent forecast errors (see Section 3.3) and false decision-making 
(see Section 3.4 and 3.5). The energy data to be processed are trans-
ferred from the production sites such as conventional or renewable 
power plants, as well as metering devices such as smart meters and their 
gateways. Generally speaking, electricity time series concerning con-
sumption or generation are often non-stationary. Furthermore, they 
possess a strong daily, weekly, and annual cycle. Additionally, they 
contain anomalies like missing or false values [68]. Thus, the goal of 
data pre-processing is to generate a time series without anomalies that 
can be used for data analysis and forecast. From a variety of applicable 
pre-processing methods, several need to be selected by the applicant. 
The choice depends on the use case, but also on prior knowledge of the 
time series and the selected forecast algorithm. First, each time series 
should be checked for erroneous behavior, with methods described in 
Section 3.2.1. Considering a new time series without any prior knowl-
edge about its characteristics, it is preferable to run through a large 
amount of different pre-processing steps to get an overview of its general 
characteristics (see Section 3.2.2). Before selecting an appropriate 
forecast model (see Section 3.3), different data transformation tech-
niques (see Section 3.2.3) can be applied. In addition, methods such as 
correlation, clustering, classification, and regression can be used to get 
insights into the characteristics of a given time series. An overview of 
data analysis method can be found in Table 2. If one has prior knowledge 
about a time series and an already trained forecast model exists, one 
only applies the pre-processing steps to receive the best results. Since 
time series might change their behavior, e.g., due to a change of the 

portfolio of an energy supplier, an automated forecast evaluation based 
on the comparison between forecast and standard load profile or his-
torical data is recommended to react instantaneously. 

3.2.1. Time series tests and corrections 
Whether we want to process a new energy time series or new data 

points of an existing one, it is preferable to check its values concerning 
plausibility, detecting anomalies, and substituting erroneous values. In 
the following, we introduce different possibilities for this task. 

Plausibility tests. At the beginning of time series analysis, plausibility 
tests to check for any errors in time series, e.g., regarding status infor-
mation of a smart meter or sensor, are crucial for the quality of the 
analysis and, thus, for the forecast results. It is highly recommended to 
verify time series and especially sensor data quality in the context of 
energy time series [70]. Since the paper focuses on automation and data 
science, plausibility checks like visual control of measurement devices 
are not applicable. 

Anomaly detection algorithms. The numerical behavior of time series is 
checked for abnormal values by anomaly detection methods [71–73]. 
These can be classified by the available knowledge of a given data set 
[71]: (i) no prior knowledge of data, i.e., unsupervised clustering; (ii) 
data labeled in normal data and anomalies, i.e., supervised classifica-
tion; (iii) only normal data available, i.e., novelty detection or 
semi-supervised recognition. In the case of energy time series, labeled 
data are hardly available, and different types of anomalies can be 
distinguished enabling an advanced knowledge extraction. There exists 
a variety of different definitions of abnormal data [71–74] pronouncing 
different aspects. Nevertheless, three types of anomalies in energy time 
series might be distinguished [72]:  

1. Noise data, which either describes data containing logical errors 
(violation of business rules, e.g., consumption data from February 
30th) or inconsistent data containing format issues, deviations from 
co-domain (negative energy generation), and significance issues.  

2. Incomplete data, which refers to missing or duplicated data and to 
data deviated from statistical characteristics randomly.  

3. Outlier data, which is generated by unusual circumstances. These 
can either be based on subjective reasons originating from human 
factors, e.g., change of consumer behavior due to price signals, or 
objective reasons, e.g., system maintenance or natural catastrophes. 

While noise and incomplete data should be treated in a correction 
step, outliers include significant information about the underlying 
events. Thus, outlier mining might offer more insights into underlying 

Fig. 3. Information layer of SGAM [9] presenting the data processing methods benefiting from respective AI methods.  
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mechanisms [73]. Outlier mining methods can be divided into (i) 
methods based on NNs; (ii) methods based on statistical methods, e.g., 
fuzzy theory, proximity-based methods, and regression analysis; (iii) ML 
approaches such as decision trees and rule-based systems time series 
analysis; (iv) methods using state estimation techniques; and (v) hybrid 
methods [71–73]. 

Substitute value formation. After different tests for plausibility and 
anomaly, missing or false values have to be substituted in the time series 
by different techniques depending on the type of error to ensure reliable 
forecasts. Besides conventional methods like ignoring or deletion of 
missing or false values and mean imputation, there are far better ways to 
estimate or correct values [75]. Prominent examples include imputation 

based on KNN and SVMs, GAs and autoregressive models, maximum 
likelihood, or imputation through interpolation. The latter technique 
should only be applied to electricity time series if the series of missing or 
false values is no longer than seven consecutive values [76]. If the series 
of missing or false values is longer, then typical load or generation 
profiles [77] or even historical values fitted to the current date should be 
used if no more sophisticated methods are available. Finally, 
non-processing can also be an option to train a forecast model based on a 
decision tree [78]. 

3.2.2. Time-series statistics 
Different statistics can be used to test for seasonality or stationarity 

to extract general characteristics of the time series. In the field of 
automation, statistics are also beneficial to link acquired knowledge to 
the current problem [79] and help to find the optimal model configu-
ration. Table 2 gives some possible correlation types and other statistics 
which can be applied on either the scaled and corrected (see Section 
3.2.1) or on the residuals of the detrended time series (see Section 3.2.3). 

3.2.3. Data transformation 
Stationarity and detrending. From many points of view, stationarity is, 

besides several other characteristics, among the most important ones 
[80], which means that the probability distribution is time-independent. 
After time series are corrected (see Section 3.2.1) and analyzed (see 
Section 3.2.2), forecast algorithms are still not able to predict them 
reasonably due to included (linear and non-linear) trends, seasonality, 
or other periodicities. Time differencing [81,82], as well as Fourier 
transformation, wavelet transformation, and empirical mode trans-
formation [83], are often used to eliminate seasonality and trend. 

Feature engineering and scaling. Besides classical time series trans-
formations (see Table 2), it is strongly recommended to use feature 
scaling techniques to increase the comparability of different data sets, to 
enhance the learning process and the accuracy of different models. Time 
series can be also transformed with feature engineering techniques, 
which can enhance model accuracy as well. Possible features are: (i) 
date-related features to extract patterns for weekdays, weekend days, 
months, and even holidays; (ii) time-related features to extract patterns 
for, e.g., daytime and nighttime; (iii) rolling mean or variance of 
different time windows; (iv) domain-specific features to extract a 
meaningful relation by multiplying, dividing or even combining 
different variables. 

3.3. Function I - forecast of load and generation 

This section is focused on the forecast methods for Electricity De-
mand (ED) and generation in the function layer (see Fig. 4), which are 
based on the data models of Section 3.2 and determine the achievable 
quality of the optimized schedule of available energy units (see Section 
3.4). To ensure grid stability [84], Electricity Generation (EG) and 
consumption have to remain in balance. As a consequence of the regu-
lation of conventional power plants due to bottlenecks in the ESC, 
economic and physical damage can be avoided by intelligent grid 
management using forecasts of time series. There are three main con-
trary mechanisms determining grid stability: (i) ED, (ii) EG of RES and 
conventional power plants, and (iii) Electricity Storage (ES) to buffer ED 
and EG. The characteristics of them differ: aggregated ED is less variable 
and depends mainly on temporal patterns like daytime, day of the week, 
holiday, and season. In contrast, EG, esp. the generation of RES, is 
mainly affected by exogenous weather conditions, thus causing a sto-
chastic behavior. However, the weather also affects human behavior and 
induces randomness to their electricity consumption. Fortunately, using 
the buffering capacities of ES can help to balance ED and EG. While both, 
ED and EG of RES are independent of each other and can be predicted by 
standalone forecast algorithms, ES depends on ED and EG as well as its 
storage capacity and its current state. Thus, it can be treated mathe-
matically as an optimization problem (see Section 3.4). The following 

Table 2 
Methods of data analysis [69].  

Category Method 

Visualization  - histogram, probability distribution  
- pie and bar chart  
- line and scatter plots  
- box plots  
- Q-Q (quantile-quantile) plots 

Parameter extraction  - location parameters, e.g. mean, median,  
- mode, standard deviation, quantile, etc.  
- concentration measure, e.g. Gini coeff.  
- rank correlation  
- Pearson correlation coefficient 

Analysis of variance  - one- or multi-factor variance analysis 
Regression analysis - linear or non-linear regression 
Correlation analysis  - (multiple) correlation coefficient  

- (partial) auto correlation function  
- (partial) cross correlation function 

Transformation using filters  - moving average  
- differentiator  
- exponential smoothing  
- Box-Cox transformation 

Spectral analysis  - periodogram  
- Fourier transform  
- (auto & cross) spectral density spectra  
- wavelet transform 

Classification  - principal component analysis  
- linear discriminant analysis  
- independent component analysis  
- factor analysis  
- Bayes classifier  
- k-nearest-neighbor classifier  
- support vector machines  
- time-series trees and forests  
- dictionary-based classifiers (BOPA, BOSSB) 

Cluster analysis  - hierarchical clustering  
- centroid-based (or k-means) clustering  
- distribution-based clustering  
- density-based clustering  
- grid-based clustering 

Significance tests  - parameter tests  
- goodness of fit  
- test of independence and homogeneity 

Plausibility tests  - check the length of time series  
- check status information for errors  
- cross-comparison between time series 

Normalization and Scaling  - min-max scaling  
- standard score 

Stationarity test  - Dickey-Fuller test  
- Kwiatkowski–Phillips–Schmidt–Shin test  
- Phillips–Perron test 

Seasonality test  - Canova-Hansen test  
- Osborn-Chui-Smith-Birchenhall test 

Time-series statistics  - standard deviation, variance  
- min-max range  
- skewness, kurtosis  
- turning points, step changes  
- predictability measure 

Estimators  - point estimation (minimum mean squared  
- error, maximum-likelihood estimator, etc.)  
- interval estimation (confidence intervals) 

A Bag of patterns, B Bag of Symbolic Fourier Approximation Symbols. 
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gives a brief introduction of different time series forecast algorithms and 
AI methods to solve prediction tasks adequately. Finally, applications 
are discussed. 

3.3.1. Electricity load forecast 
The electricity load of a certain region contains many different 

consumers like private and commercial users. In addition to the above- 
mentioned dependencies (daytime, weekday, season, and weather), 
energy consumption is a significant cost factor in manufacturing com-
panies but also in households. Thus, the energy consumption price is 
correlated with the electricity load. This relationship is induced by the 
adaptation of consumption to prices from the energy market [69] and 
tariffs. Therefore, minimizing energy usage might be integrated into the 
decision-making system of production planning and control to reduce 
production costs [85]. In the case of a single factory load forecast, hybrid 
(physical) simulations of manufacturing process queues including static 
and dynamic processes can be used [85]. These simulations are mainly 
based on physical models. However, forecasting an entire grid (or re-
gion) requires an appropriate energy consumption estimation of all 
participants, and purely physical models would be cumbersome to use. 
An overview of state-of-the-art algorithms to forecast load time series for 
grids is summarized in Table 3 and details can be found in Refs. [81,82], 
and [86]. 

3.3.2. Renewable energy forecast 
Considering the fact that several RES such as hydropower, biomass 

energy, geothermal, wind, and solar power plants are part of the elec-
tricity grid, their forecast is highly important. The latter two depend 
strongly on the prevailing weather conditions [91,92], while the other 
RES have different dependencies. To reach a higher penetration of RES 
into the electricity grid, the expansion of renewable energies is primarily 
driven by the expansion of solar and wind power generation, given that 
the implementability of other RES is limited due to geographical, 
geological, and biological reasons. Therefore, the need for highly ac-
curate solar and wind power forecasts can not be underestimated. Un-
fortunately, each forecasting method for wind and solar power yields 
results with a specific temporal resolution depending on the included 
geographically induced weather conditions. Thus, an evaluation of the 
forecast results on real measurements of the investigated power plant is 
strongly recommended. Additionally, there exists a huge difference be-
tween predicting a single power plant and an entire electricity grid [93] 
due to spatiotemporal balancing effects. There are many different types 
of models to predict solar or wind power, which can be generally 

Fig. 4. Function layer of SGAM [9] representing AI improved forecast methods of energy time series.  

Table 3 
Overview of forecast models and their domain of application.  

Algorithm Description 

Regression The regression formula is always manually 
formulated and therefore understandable, 
but it cannot figure out complex, non-linear 
relationships, and even seasonality. 
Regression analysis for the prediction of 
residential energy consumption was applied 
in Ref. [87]. 

Autoregressive Integrated Moving 
Average (with eXogenous 
variable) 

The Autoregressive Integrated Moving 
Average (with eXogenous variable) (ARIMA 
(X)) algorithm is mostly applied to self- 
correlated time series and built on a 
regression of the endogenous variable and its 
lag values as well as exogenous variables like 
weather data. It can be extended by a 
seasonal component. The mathematical 
model is easy to train, understandable and 
stable in its application. It was used, e.g., to 
forecast power demand for an office building 
and the energy demand in China [81,86]. 

Fuzzy Fuzzy algorithms have been used to get a 
better understanding of uncertainties in the 
electricity load forecast and have a high 
accuracy considering uncertain situations. 
However, they have high computational 
complexity and lack stability [86]. 

NN NNs need big data and expert knowledge to 
set up an appropriate architecture to avoid 
overfitting. Different model architectures 
were applied to short-term energy load 
forecasting and the results were compared in 
Ref. [88]. 

RF RFs are very robust but also limited due to 
their constrained co-domain. RF is used, e.g., 
to combine feature engineering and selection 
in an optimization framework to solve 
accurate load forecasting tasks in SGs [20]. 

SVM SVMs can solve non-linear problems in the 
case of small samples and improve 
generalization. However, they are very 
sensitive to missing data. SVMs were used to 
calculate the demand response baseline in 
office buildings to manage SGs [89] and 
short-term residential load forecasts [90].  
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distinguished between statistical, physical, and hybrid models [94]. 
Whereas statistical models calculate future values of power output with 
past power values, physical models use future values of numerical 
weather prediction or cloud movement [95,96]. Hybrid models finally 
merge the two concepts by optimizing statistical and physical models. 

Solar power forecast. The power output of a specific PV module de-
pends on (i) the incident light (diffuse and direct irradiance) [97,98], (ii) 
on its system configuration including inverter and coating, (iii) on 
shadow casting and (iv) on temperature [99]. Snow and dust can 
additionally cover the surface and, consequently, reduce PV-power 
output. Satellite images can directly measure the solar irradiance and 
extrapolate it by Cloud Movement Vectors (CMV) into the near future 
(<6ℎ) [95]. In this regard, Numerical Weather Prediction (NWP) models 
estimated solar irradiance using various parameters for the next days 
[100]. Model Output Statistics (MOS) using AI further improved the 
prediction of solar irradiance in topographic terrain [101]. Solar power 
forecasting for an entire electricity grid is very challenging due to the 
heterogeneous distribution of installed PV power. A comparison be-
tween different model types to predict solar power output including 
different forecast horizons found that the persistence forecast method 
performs best for forecast horizons only a few minutes ahead in time 
[101]. CMV, NNs, and different time series models achieve the best re-
sults for a couple of hours, whereas NWP is the best choice for larger 
forecast horizons [101]. A multivariate regression combines these 
different forecast techniques to receive one forecast model for every 
forecast horizon [102]. This hybrid technique performed best according 
to Ref. [103]. 

Wind power forecast. Wind power forecasting is another challenging 
task, due to very different local topographical conditions, including 
surface roughness. Wind speed increases with height and depends on 
wind direction. Currently, there are only local wind measurements 
(wind power output of single plants and the numerical weather pre-
diction) which include discrete horizontal grids and many vertical layers 
to predict wind power. Unfortunately, there is no accurate wind speed 
estimation using satellite images. However, wind speed prediction was 
improved by applying MOS using NNs and real wind speed measure-
ments on NWP output [104]. Furthermore, the distance between wind 
power plants is also important, since wind direction and 
velocity-dependent turbulent flow around a certain wind power plant 
affects neighboring plants [105]. Additionally, different wind turbines 
have varying properties with individual efficiencies to be considered. 
Meteorological fronts, known as ramp events, and the heterogeneous 

distribution of installed wind power can lead to significant challenges 
for power system operators [106]. Since all single wind power farms 
have a different efficiency considering the previously mentioned effects, 
many researchers have investigated different models to simulate and 
predict single wind power farms. Single time series forecast algorithms 
(see Table 3) were outperformed by a hybrid combination of them 
[107]. An improved radial basis function NN-based model with an error 
feedback scheme to optimize wind power forecast accuracy for the next 
72 h was proposed by Chang et al. [108]. A novel hybrid approach based 
on deep convolutional network, wavelet transform, and ensemble 
technique was able to outperform the standard persistence method and 
shallow NNs [109]. Through spatial smoothing, Matthias et al. were able 
to achieve a more accurate wind power prediction for several wind 
farms on a regional scale [110]. 

3.3.3. Forecast automation 
Summarizing Sections 3.3.1 and 3.3.2, the forecast process chain 

consists of many different steps and each of them requires expert 
knowledge for selecting and configuring the problem-specific algo-
rithms. The difficulty is increasing, considering the organization and 
operation of the entire forecast pipeline as shown in Fig. 5 (a). In 
consequence, there is an urgent need for unifying and automating these 
different tasks through, e.g., Automatic ML (AutoML). AutoML solutions 
only need input data, e.g., energy time series, to provide a reasonable 
forecast without any necessary human intervention. Thus, it enables 
non-experts to use ML procedures effortlessly. An AutoML system needs 
to compute its tasks efficiently and easily comprehensibly. The general 
AutoML pipeline (see Fig. 5 (a)) and its challenges are described in 
Ref. [111]. Firstly, different data pre-processing, data analysis and 
feature processing steps should be applied (see Section 3.2). During the 
selection of a problem-specific ML model, overfitting and a possible 
ensemble creation need to be considered. Additionally, each forecast 
model has to be optimized concerning its hyper-parameters. Therefore, a 
procedure containing of three steps was suggested [111]: (i) filtering 
methods to narrow down the range of hyper-parameters (without 
training the ML parameters) by applying different statistical tests 
(chi-square test, fisher score, or correlation coefficient); (ii) wrapper 
methods using trained ML as black boxes to select hyperparameters; (iii) 
embedded methods using knowledge of the ML structure and parameters 
to find the hyper-parameters. In Ref. [112], two state-of-the-art ML tools 
(auto-sklearn [113] and TPOT [114]) were tested to solve the automa-
tion process chain in the context of electricity load forecast. By using two 

Fig. 5. Forecast process pipeline (a) included in the workflow of TPOT (b) and auto-sklearn approach (c).  
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benchmark datasets of load consumption, it was concluded that these 
automation systems have a high potential [112]. A scheme of the used 
workflow is shown in Fig. 5, in which both AutoML frameworks applied 
the same pre-processing steps and ML models as forecast process pipe-
line (see Fig. 5 (a)). TPOT uses genetic programming in a loop to opti-
mize hyperparameters, whereas auto-sklearn uses Bayesian 
optimization. In comparison with manually configured models, AutoML 
can produce robust models achieving accuracy close to a prediction 
system designed by an expert. Several other packages based on Python, 
e.g., pyautoweka2 and PyAF,3 exists, which use AutoML approaches as 
well. It is preferable to adapt an ML pipeline to an entire time-series 
prediction task because some algorithms are only suitable for classifi-
cation tasks [112]. Additionally, the state-of-the-art libraries (auto-s-
klearn and TPOT) do not include the time-series models presented in 
3.3.1 and 3.3.2 but give a practical overview of the AutoML approach. 
The future challenge is to extend these frameworks by accurate 
time-series forecast algorithms for energy consumption (see Section 
3.3.1 and esp. Table 3) and RES generation as described in Section 3.3.2. 

3.4. Function II - energy management and potential solutions to the unit 
commitment problem 

This section considers the Energy Management System (EMS) as part 
of the ESC, which enables the optimized scheduling and operation of 
energy units. Based on the forecast of RES and demands (see Section 
3.3), it also belongs to the function layer of the SGAM [8]. 

EMS is an integral component of energy system automation and can 
facilitate the operation of AI technologies. The functions of an EMS can 
range from the introduction of energy efficiency to process optimization 
measures in the industry and household sectors to dispatch planning and 
operation of energy generation or consumption units. Here, we follow 
the interpretation of most of the scientific literature and focus on the 
scheduling and operation of energy units. In European countries, power 
generation portfolios are operated by private, public, or semi-public 
utilities and suppliers. With the rise of decentralized portfolios of RES 
generation and their direct market transactions, so-called aggregators 
have emerged. Most of them bundle RES generation units to collectively 
predict and market their generated energy. The dispatch planning of 
generation portfolios ranges from resource-driven long-term planning 
for large power plants to short-term scheduling horizons, especially for 
volatile RES. Short-term horizons depend on gate closure times of short- 
term markets and vary from a few minutes up to several days. For the 
technical implementation, the market penetration of virtual power 
plants linked to local control systems and integrated EMS is growing. 

In recent years, solutions to enhance the degree of flexibility of the 
consumption side have been increasingly pursued, recognizing the 
restricted controllability of intermittent renewable generation units as 
well as new challenges emerged, e.g., by electric mobility. Important 
instruments defining the market and grid-oriented flexibility of con-
sumption facilities include demand response, demand-side manage-
ment, peak shaving, and direct participation of consumption units in 
ancillary services markets. Core components of these EMS are optimi-
zation algorithms that take decisions on the optimum dispatch of gen-
eration, storage and consumption units based on boundary conditions or 
physical constraints. On the consumption side, basic rules-based time- 
naive procedures are still commonly used. On the generation side, in 
contrast, elaborate approaches are the norm for planning the unit 
commitment of systems with horizons of days, weeks, and even months 
or years [115]. 

The Unit Commitment Problem (UCP) is a mixed-integer problem 
and can be divided into two sub-problems: (i) the binary decision on the 
operating state of each energy unit, i.e., whether it is running at a certain 

time of the scheduling horizon. This problem can be considered a 
combinatorial optimization problem. (ii) the continuous decision of the 
power state, i.e., the rate at which the units generate, consume or store 
energy. The mixed-integer nature of the UCP leads, if not relaxed, to a 
non-convex solution space, which often results in highly complex NP- 
hard problems, e.g., see Ref. [116]. Common conventional approaches 
to solve the UCP include DP [117], Lagrangian Relaxation (LR) [118], 
Integer Programming (IP) [119], Branch-and-Bound [120], 
Mixed-Integer (Linear) Programming (MIP, MILP) [121,122], and 
Nonlinear Programming [123]. Uncertainties resulting from load and 
generation forecasting errors were solved by stochastic and robust 
optimization [124,125]. As a classical optimization problem, the UCP is 
an ideal use case for AI and ML methods. Due to its central function in 
the energy system and its nature, it is not surprising that numerous 
scientific publications have been dedicated to the solution of the UCP via 
AI in recent years. The scalability of complex problems with high 
computing requirements is a key challenge herein, which still limits the 
market share of AI-based EMS. However, growing computational capa-
bilities, new algorithms, and parallel processing potential increase the 
chances of AI techniques in this area. Most of the AI approaches to solve 
the UCP are hybrid techniques that complement and improve conven-
tional methods such as DP and LR with AI. With growing possibilities, 
more approaches entirely based on AI techniques or pure AI hybrids 
were developed. The potentials of logic and knowledge representations 
of expert systems, fuzzy systems, NNs, and evolutionary computing 
methods have been explored since the mid-1980s [126]. A condensed 
overview of the diverse approaches to solving the UCP using AI tech-
niques is given in the following sections. 

3.4.1. Knowledge-based systems 
To overcome the human cognitive barrier in power system opera-

tions and to enhance the usefulness of EMS, knowledge-based systems 
were proposed to replace or supplement numerical approaches, to cope 
with the overwhelming quantity and rate of data obtained [127]. The 
suggested approach included the application of a knowledge base in an 
expert system using numerical methods to aid in decision-making and to 
solve complex optimization tasks. This approach can be categorized into 
rule-based, frame-based, and logic-based AI programs [127]. Another 
hybrid approach also based on an expert system was designed to assist 
operators in modifying UCP input data to meet all scheduling constraints 
[128]. A significant number of approaches to solving UPC originate from 
the field of evolutionary algorithms and computing, which will be dis-
cussed in the following. 

3.4.2. Evolutionary algorithms and swarm intelligence 
GA. It was found that an adaptive search method using GA (for de-

tails of GA see Section 2.6) can replace shortcomings of mathematical 
programming approaches for a small UCP-example of thermal power 
generating units [129]. The required high computational time was rated 
as less significant considering the increasing computing power and 
parallelization possibilities. In a case study with systems of up to 100 
thermal energy generating units, GA was instated for solving the binary 
optimization subproblem while variants of differential evolution algo-
rithms were used for the continuous subproblem [130]. Significant cost 
savings in comparison to eight benchmarking algorithms were recorded 
for larger systems with 40–100 units. Unfortunately, the benchmarks 
included only a priority list and AI-domain approaches. Thus, further 
comparison with discrete mathematical optimization algorithms would 
be enlightening. 

Evolutionary Programming (EP). An EP approach to solving the UCP 
for a system of 100 thermal generation units consisted of a competition- 
and-selection routine and a mutation operator [131]. The implemented 
algorithm reached a satisfactory performance and showed advantages in 
scalability over DP, which is only appropriate for small generator sys-
tems. A potential weakness of evolutionary methods for solving the UCP 
is the limited local and global search capability, which raises the risks of 

2 https://pypi.org/project/pyautoweka/.  
3 https://pypi.org/project/pyaf/. 
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entrapment in local optima esp. for large-scale problems with con-
straints of high complexity [132]. A recent overview of differential 
evolution algorithms in economic dispatch can be found in Ref. [133]. 

Particle Swarm Optimization (PSO). To solve the UCP for a dual-mode 
combined heat and power portfolio including secondary heat and ther-
mal generation units, a Binary-PSO (BPSO) approach solved the 
combinatorial discrete sub-problem applying a sigmoid function, while 
the PSO determined the solutions for the continuous decision variables 
[134]. The results were promising but appear to be dependent on the 
system complexity. A three-stage approach to solve a UCP included 
obtaining a primitive structure of the 100 thermal units of the IEEE 
118-bus system in the first stage. In the second stage, the economic 
scheduling was solved by a weight-improved crazy PSO considering a 
pseudo-inspired algorithm. In the third stage, a solution restructuring 
process determined extra energy reserves and minimize total operating 
costs [132]. A recent survey on economic dispatch using PSO was con-
ducted in Ref. [135]. 

3.4.3. Reinforcement Learning 
Recently, DRL algorithms (see Section 2.4) have been increasingly 

studied for the solution of the UCP and showed promising results. Here, 
an environment is built based on the Markov decision process. The 
environment maps the energy unit portfolio of the EMS and its specific 
constraints to the constraints of an equation system of a discrete math-
ematical model. In this setting, single or multiple RL agents are trained 
to maximize a reward function. The reward function takes the expense of 
producing and consuming electricity into account, as well as the profits 
from the energy sold. The environment holds information on changing 
key determinants such as variable energy consumption and generation. 
Applied algorithms include Deep Q-Networks [136], Prioritized Deep 
Deterministic Policy Gradient [137], or Proximal Policy Optimization 
[34,138]. 

3.4.4. Further approaches with generative adversarial network 
The use of GANs (see Section 2.5) for EMS and the UCP solution 

promises great potential to complement the described approaches. 
Among others, the challenge of the high quantity of required training 
and test data for DLR models can be addressed by GAN through gener-
ating new data sets with the same statistical properties as the original 
systems. Furthermore, GANs can create data for systems where no 
measurement data sets are available, based on parameters such as the 
nominal capacity of the units and the derived behavior of similar 
systems. 

3.5. Business – trading 

Regarding the ESC, one of its last components consists of the elec-
tricity trade and the associated EPF. Here, we cover state-of-the-art 
procedures using ML and DL approaches for EPF, which can be sub-
divided into Day-Ahead (DA) and Intraday (ID) spot price forecast. 

3.5.1. Day-Ahead spot price forecast 
The DA spot price prediction is a frequently discussed topic con-

sisting of many different approaches as generally described in Refs. 
[139,140], and specifically regarding DL in Refs. [141,142]. An 
often-used approach consists of LSTM NN, which performs exceedingly 
well in spot price forecasting [143]. Different approaches are enhancing 
LSTM forecasts using advanced hyper parametrization [144] and 
combining LSTM NN with a wavelet approach to model the seasonality 
and recurrent patterns of the spot price [145,146]. Furthermore, a 
combination of a LSTM model and statistical models to forecast the DA 
price was proposed [147]. Besides LSTM, other NNs were also used in 
literature, e.g., Recurrent NN [148], Multi-Layer Perception [149], or 
Quantile Regression NNs [150]. Quantile forecasts were also investi-
gated by applying a Bayesian approach in combination with NNs [151], 
a forecasting approach based on the XGB [152], and an interval 

forecasting approach based on an extreme learning machine in combi-
nation with bootstrapping [153]. 

3.5.2. Intraday spot price forecast 
In comparison to the DA market, the ID market is characterized by its 

short trading horizon and inherent volatility of each electricity product. 
With less than 24 h until delivery, market participants take sudden 
changes, e.g., in weather forecasts, into account and adjust their trading 
decisions to minimize their risks [154,155]. Due to the increase in RES, 
the ID spot market gained more attention in the literature in recent 
years. However, while there were various papers discussing the different 
influencing factors of the respective markets [154,156–159], the num-
ber of EPF papers dedicated to the German ID market is relatively small, 
especially regarding ML. In this respect, the first advances in the ID price 
forecast were achieved considering the Iberian spot market MIBEL [160, 
161]. While a Multi-Layer Perception NN was used to forecast the ID 
prices in Ref. [160], a probabilistic forecasting approach based on a 
statistical learning algorithm including the DA spot price was studied in 
Ref. [161]. Besides the Iberian spot market, the performance of different 
NNs on the Turkish ID market was compared with regression and LASSO 
approaches [162]. Most of the few studies considering the German ID 
market applied only an elastic net regression instead of ML methods 
[163–165]. However, the performance of a simple NN was compared 
with an auto-regressive process using external variables and a naive 
method on the German ID market to describe a dense grid of the spot 
price quantiles [166]. 

3.5.3. Machine learning trading strategies 
Given the recent advances in the EPF, we want to highlight the state- 

of-the-art ML trading strategies, that can be classified into two groups: 
(i) hybrid approaches and (ii) RL approaches. In the first case, hybrid 
approaches base their trading strategies on underlying ML predictions of 
important variables, while the actual trading decision is executed 
through solving a MILP problem [167]. However, the core trading de-
cisions of the hybrid approaches are not utilizing ML approaches. 
Regarding the RL approaches, one can divide the group into (i) trading 
strategies into the national spot market and (ii) trading strategies on 
smaller scales, e.g., local electricity grids or microgrids. For the general 
electricity market, different trading strategies for the German contin-
uous ID market applying RL based their strategy on Markov decision 
processes and have similar experimental settings, yet they differ in the 
algorithmic implementation [168–170]. A Deep Q-network imple-
mentation was used in Ref. [169], whereas in other studies the Markov 
decision process was restrained by a threshold policy for an analytic 
model [168] and for the REINFORCE algorithm [170]. However, the 
previous research only considered trading in a daily or hourly frequency, 
which contradicts the continuous nature of the ID market. This problem 
was addressed by applying a Proximal Policy Optimization algorithm to 
an every-minute trading process [171], showing the applicability of RL 
in ID trade. Beside the research on the German ID market, a similar 
approach to Ref. [171] was used for DA market trading in Ref. [172] 
Additionally, an ML bidding strategy for virtually trading between the 
DA and ID market was proposed in Ref. [173]. Various models for 
electricity trading on a smaller scale, e.g., for microgrids or ES units, 
were published [174–176]. In particular, a multi-agent RL system was 
constructed to model the trading decisions of different prosumers on 
their self-defined grid market environment [174]. Figs. 1–7. 

3.6. Fully integrated and automated Electricity Supply Chain based on 
Artificial Intelligence 

As shown in the previous sections, there has been immense progress 
in the development of AI to support, improve and automize various, but 
distinct tasks within the ESC. However, in most cases, the various 
methods are specifically designed for the respective layer without 
consideration of the overall ESC. Furthermore, the development is often 
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done manually, based on the underlying task and data characteristics. In 
this work, we propose the integration of the distinct tasks to one fully 
automated ESC that interconnects the individual layers. By neglecting 
the plant design and sizing as well as predictive maintenance, which 
remain mainly distinct tasks, we scheme an adaptive, self-learning 
workflow for an automated ESC based on AI as shown in Fig. 8. To 
achieve a fully automated ESC, commonly used rule-based engineering 
methods need to be replaced by knowledge-based (see Section 3.4.1) 
and data-driven AI approaches [177]. Furthermore, thorough commu-
nication between the individual layers has to be ensured, to recurrently 
optimize the distinctive tasks in a coherent matter. The most crucial 
point in the proposed data-driven approach is obviously the data quality 
[178]. Thus, several standard data preprocessing steps as well as more 
sophisticated methods, e.g., AI-based anomaly detection and substitu-
tion [179,180], are required to ensure reliable, anomaly-free data sets 
(see Section 3.2). Concerning the function and business layer, the data 
characteristics have to be analyzed and classified to enable an auto-
mated knowledge-based decision for appropriate methods (see Section 
3.3-3.5) [182]. In this regard, AutoML optimization (see Section 3.3.3) 

as well as the neural architecture search with RL [183] might prove 
beneficial to tune the individual methods and enhance the optimization 
without the necessity of an expert. The automatic selection of the most 
suited algorithm for a specific task and for a certain data set is of 
particular importance. Thus, one could deploy an RL process to find the 
best candidate considering a validated comparison of multiple model 
approaches over time. To support this selection process, Explainable AI 
(XAI) might be useful to evaluate the quality of the chosen method and 
enables the necessary human-understandable monitoring of the 
decision-making to lead to a reliable AI-automated system [187]. In 
summary, the full AI automation of the ESC is still in progress, with 
various points to consider. Nevertheless, with a combination of a 
data-driven AI, XAI, RL, and AutoML approach, we see a fully automated 
ESC [184] as achievable in the near-term future. 

4. Perspectives on the Electricity Supply Chain automation 

In this Section, we want to highlight new trends in the AI community 
that are also beneficial for the ESC automation. In this regard, Section 

Fig. 6. Optimization of scheduling and operation of energy units occurring on function layer of SGAM [9].  

Fig. 7. Electricity trade and price forecast belonging on business layer of SGAM [9].  
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4.1 covers the human-AI interaction, while Section 4.2 focuses on the 
computational challenges for the automated ESC. In Section 4.3, the 
question of resilience is emphasized, and we consider the influence of AI 
on ESC for the energy transition process in Section 4.4. 

4.1. Human-centered and standardized Artificial Intelligence 

The increase of information collected, analyzed, and communicated 
leads to the need for process automation, which has resulted in a 
growing number of implemented AI methods for ESC support [5,182]. In 
this regards, an automation method was constructed to support ESC 
agents by reducing the information complexity notably through 
knowledge visualization of aggregated dispersed resources and to collect 
feedback from different agents [184]. Associated with the notion of 
“Human-on-the-loop” [185], this contextualization of the collected data 
supports the human decision process and reduces the cognitive load for 
the operators. Thus, communication between automated systems and 
users is key for an efficient implementation of the automated ESC and 
should be at the center of AI system design to enhance the performance 
of the AI methods, while simultaneously increasing user acceptance. In 
this regard, a Human-Centered AI framework to achieve high levels of 
human control and automation but also setting requirements to ensure 
efficiency and reliability was proposed in Ref. [186]. Here, we follow the 
proposition of [186] and highlight the need for a standardized AI 
framework design to ensure interoperability and comparability. 
Furthermore, privacy and security issues need to be considered esp. due 
to the increase of communicating tasks in the ESC. This requires stan-
dards and testing processes to protect user access and energy system 
integrity [5] as proposed by the American National Institute of Stan-
dards and Technology [178]. Additionally, AI automation processes 
have to be monitored and validated, thus, techniques like XAI [187] are 
necessary to guarantee reliable, safe, and trustworthy applications [5]. 

4.2. Computational challenges and perspectives 

The specific implementation of AI automation to ESC encounters 
several challenges and possible directions of development. In this re-
gard, the necessary computing adaptation to tackle data streaming, 
processing, analyzing, and storage could be answered through the cloud 
computing paradigm [188]. In recent years, AI tends to be implemented 
more and more remotely to access the needed large computational and 
storage resources. However, the large amount of energy data comes with 
specific needs in terms of IT infrastructure, data quality, data sharing, 
and security mechanisms that have not yet been met [189]. Moreover, 
big data techniques should also be adapted to energy data to perform 
real-time control [190]. To tackle this aspect, approaches using stream 
and iterative computing were proposed [191,192]. In contrast, edge 
computing can also be preferred to cloud computing due to its lower 
computation latency [182] and since local data storage prevents certain 
privacy issues. The edge paradigm has fostered new concepts such as 
TinyML [193] and neuromorphic computing [194]. These concepts offer 
the usage of ultra-low-power devices for local, hardware-based AI to 
improve computing efficiency and to reduce communication usage. 
However, one has to consider that these concepts have not yet been 
deployed on a large scale. An intermediate technique providing low 
latency and benefiting from cloud computing infrastructure is fog 
computing, which extends the local infrastructure by using computing 
capacities near the data-creating network edge [195]. Fog computing is 
a promising solution combining the advantages of cloud and edge 
computing [195,196]. 

4.3. Sustainability and resilience of Artificial Intelligence automation 

For sustainable systems, efficiency and resilience are necessities 
[197,198]. Efficiency is required for economic success and is achieved 
through a highly specialized system limiting the usage of resources. 
Simultaneously, resilience is implemented using redundancy and 
diversification of measures, enabling systems to handle unexpected as 

Fig. 8. Scheme of an AI-based automated ESC enabled by XAI, RL, knowledge-based AI and data set classification (depicted in red color). XAI methods enable the 
monitoring of automized decisions of applied processes, which are learned using RL and thus creating an adaptive knowledge base for certain classes of energy data 
sets. (The colors display the corresponding SGAM layer used in.). 
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well as possibly catastrophic situations caused by natural circumstances 
or criminal activities [199]. Thus, a trade-off between efficiency and 
resilience has to be found to adapt costs, computation power, and time 
but also security and robustness. To foster AI automation within the ESC, 
resilient information and communication technologies are crucial due to 
the ongoing entanglement between the critical infrastructure sectors of 
energy, information technology, and communication. This entangle-
ment is increasing the access to energy data as well as to available ser-
vices, but it also increases the risk of data errors, manipulation, and 
cyber-attacks. It was found that manipulations were possible by inject-
ing false data sets into sensitive data sets such as energy prices, con-
tracts, and transactions between grid entities [200]. In addition, one has 
to consider adversarial attacks on AI models. Recent papers revealed 
general weaknesses in AI time series models [201], and in load fore-
casting in particular [202]. Furthermore, research in the direction of 
EMS with RL showed similar problems [203]. One promising AI solution 
that addresses these general challenges is GAN (see Section 2.5), which 
has been proposed to increase the forecast accuracy [204] but more 
importantly has been implemented both against cyber-attacks [205] as 
well as for privacy protection [206]. 

4.4. Energy transition through Artificial Intelligence 

Here, we briefly want to outline the indirect influence of AI on the 
electricity domain. As underlined by the International Energy Agency 
[207], energy efficiency is crucial for tackling energy transition, and one 
aspect to improve it is the generation of new materials for energy 
technologies including batteries and PV plants [208]. With the flexible 
and rapid prediction framework of ML methods, the discovery of new 
materials is expected to be accelerated by a factor of ten [209]. How-
ever, this self-driving laboratory paradigm carried by AI and automation 
is challenged with the limited data quality and the amount available as 
well as with the non-physical form of ML that limits interpretation and 
extrapolation [210]. Another aspect to enhance energy efficiency is to 
use AI for building design and energy management (as a special form of 
ESC) [5]. Beyond architectural intelligence for new constructions, AI can 
be largely applied to predict and reduce building energy consumption 
while considering comfort, health, and productivity in the living spaces 
[177] esp. by applying an automated ESC if RES are included. To be 
optimal, this evolution of building construction and management re-
quires new information types such as 3D topographic data [5] as well as 
combining data-driven-based methods with knowledge methods [211] 
within an automated ESC. This collection of information improves 
diagnostic interpretation for building fault detection, which participates 
in the efficient management of infrastructure. In addition to energy ef-
ficiency, the use of RES is also key to fostering energy transition. AI 
supports their deployment and enables adaptation to changing RES by 
enabling power generation prediction, sizing systems, evaluating risks, 
and scheduling operations [7,6,212] as shown in Section 3. Moreover, 
AI facilitates the usage of RES for electric vehicles charging within 
existing infrastructure with minimal investments [182]. This could be 
achieved through coordinating, e.g., solar energy availability and 
vehicle battery charge [181]. To date, however, AI approaches have 
been mainly studied for wind and solar energy systems, while more 
research remains considering other and hybrid RES [212]. 

5. Conclusion 

In our work, we thoroughly investigated the newest state-of-the-art 
research on the automation of the ESC. Due to the rising volatility in 
electricity production, more and more researchers account for the 
complexity by proposing new AI methods on every level of the ESC. We 
assert and assess both new and established methods and aggregate the 
most promising candidates. Following the SGAM, we categorize the AI 
methods on individual levels of the supply chain, offering a distinctive 
analysis depending on their field of application. Interestingly, we found 

that ML methods are not only employed for forecasting and optimization 
tasks but instead play a vital role in data processing and anomaly 
detection as well. In this regard, implementations of AI are used to 
secure control of highly hazardous or volatile energy sources as well as 
security environment levels, especially on the communication and in-
formation layer of the SGAM layout. Nevertheless, we also assert that 
the deployment of AI methods has to be considered under the viewpoint 
of resilience, to ensure a reliable energy system. The main result of this 
paper is the proposition of a fully automated ESC and enabling de-
velopments for implementation. Even though AI is still often developed 
for the individual layers of the ESC, we elaborate that the integration to 
a fully automated ESC might be within reach in the coming years due to 
the developments in XAI, RL, knowledge-based AI and data-driven 
AutoML. With a self-learning workflow, it is possible to optimize data 
processing from generation to forecasting and to use it for management 
and trading decisions. However, there remain challenges in terms of 
data quantity needed, computational performance, resilience, algorithm 
robustness, human interaction as well as standardization that need to be 
solved to ensure a fully automated ESC based on AI. 

Overall, this paper targets researchers and operators of the electrical 
sector in order to enhance the understanding of AI, highlighting the 
possibilities, and offering a first introduction to the different fields of 
automated ESCs. 
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