
A Rotation Invariant Feature Descriptor O-DAISY and its FPGA
Implementation

Jan Fischer, Alexander Ruppel, Florian Weißhardt, Alexander Verl

Abstract— State-of-the-art local feature descriptors like SIFT
or SURF require a significant amount of computational power
which prevents their usage in applications with real time
constraints. Despite recent efforts to simplify the calculation
of feature descriptors, a faster computation comes often to the
disadvantage of weakening the invariance to rotation or scale.
Recently, Tola et al. introduced DAISY, a new local feature
descriptor for wide-baseline matching across stereo image pairs.
It is shown that DAISY outperforms SIFT in terms of matching
accuracy while being computed significantly faster. This paper
takes on the idea of DAISY by proposing a rotational invariant
extension of the descriptor, called O-DAISY, and outlining its
implementation on FPGA to achieve real time performance.
The results are benchmarked against its original version and
against the widely used descriptors BRIEF and SURF on a
standardized image set.

I. INTRODUCTION

Object detection is a vital capability of modern service
robots like Care-O-bot R© 3 [1] to assist humans in flexible
and challenging household environments. Over the last years,
local feature point descriptors proved to be efficient for
reliable object description even under visual transformations
like changes in scale, rotation or illumination.

Currently, the well known SIFT algorithm [2] is the most
used local 2D feature detector and descriptor algorithm.
However, due to its computational complexity it is unsuitable
for real time object detection. To overcome the computational
burden of SIFT, Bay et al. introduced SURF [3] which
performs comparable to SIFT in terms of matching accuracy
while greatly reducing computation time. Inspired by the
developments of SIFT and SURF, Tola et al. developed
DAISY [4], a novel feature point descriptor for wide-baseline
matching across stereo image pairs which outperforms SIFT
and SURF in terms of matching accuracy and computation
costs.

However, even with the improvements in computation time
of DAISY and SURF, up to this date most robust object
detection systems are still not capable to perform in real time.
Recent developments in feature point descriptors extensively
elaborate possibilities to simplify descriptor calculation, re-
ducing it to pure intensity comparisons and representing the
descriptor as a binary string enabling fast matching [5], [6],
[7]. One prominent example is BRIEF from Calonder et
al. [8], which randomly compares intensity values of image

This work was conducted in the department of Robot
Systems at the Fraunhofer Institute for Manufacturing En-
gineering and Automation (IPA), 70569 Stuttgart, Germany,
jan.fischer@ipa.fraunhofer.de, ARuppel1@gmx.de,
florian.weisshardt@ipa.fraunhofer.de,
alexander.verl@ipa.fraunhofer.de

point pairs within the local neighbourhood of a feature point.
However, the significant reduction of the computational
complexity of the proposed feature descriptors is often traded
for poor invariance against visual transformations like scale
or rotation.

For real time object detection it is desired to have an
algorithm that is as strong as SIFT, but much faster to
compute. Therefore, this paper takes on the idea of Tola
et al. and proposes an extension to the DAISY descriptor
enabling it to explicitly handle variations in rotation. We
term this rotation invariant descriptor O-DAISY and propose
an FPGA implementation of the feature descriptor to achieve
real time performance. Results show that O-DAISY generally
outperforms SURF on the presented benchmarks and the fast
keypoint descriptor BRIEF in terms of rotational invariance.
As a platform for the FPGA implementation serves an Avnet
Virtex-6 FPGA DSP Kit, with a Virtex 6 LX240 that has over
240.000 logic cells, 768 DSP and 832 BRAM16 slices.

This paper is organized as follows. Section II discusses
existing FPGA implementations of feature detectors and
evaluates feature descriptors based on an estimation of
the necessary resources and control signal complexity for
FPGA implementation and the possibilities for parallel and
pipelined computation. Then, section III presents the novel
rotation-invariant O-DAISY descriptor and benchmarks it
against the original DAISY, BRIEF and SURF. Following,
section IV explains the proposed FPGA design of O-DAISY.
Finally, section V summarizes the paper and gives an outlook
for future work.

II. RELATED WORK

To our knowledge, research mainly focused on the FPGA
implementation of feature detectors rather than the imple-
mentation of feature descriptors. Prominent examples are
given by the implementation of the Harris corner detector on
an FPGA board by Tippetts et al. [9], an FPGA realization
of the difference of Gaussian (DOG) interest point detectors
used for SIFT by Yao et al. [10], Bonato et al. [11] and Chati
et al. [12] and an implementation of the Fast-Hessian corner
detector by Svab et al. [13].

Considering feature descriptors, SIFT proves to be un-
suitable for FPGA implementation because of its rotation
schema which requires a high number of control signals for
the rotation of the input patch. Additionally, the weighting
schema for filling the histograms, which is applied after the
patch rotation, would require over 1000 multiplications and
additions within one clock. Even large FPGAs like the Virtex
6 do not provide enough resources for this.



Mikolajczyk and Schmid [14] were the first to introduce
a log polar grid instead of SIFT’s regular grid for gradient-
histogram sampling. The resulting descriptor GLOH (Gra-
dient location-orientation histogram) outperforms SIFT in
terms of distinctiveness and robustness. However, it still
uses SIFT-like bilinear weighting for the creation of the
histograms, which results in the same downside for FPGA
implementation as SIFT.

Winder and Brown [15] split the descriptor creation into
four pipeline stages and experimented with various instan-
tiations of them. To estimate appropriate algorithm parame-
ters, they apply a machine learning approach. The feature
descriptor is created by pooling local pixel information
like image gradients into histograms and concatenating all
selected histograms to a single large vector, which represents
the first version of the descriptor. All schemes, for which
the machine learning algorithm is allowed to approximate
log-polar arrangement of the local histogram areas creation
perform equally well and outperform the standard SIFT
pooling scheme.

Tola et al. [4] use the log-polar grid with Gaussian weights
from [15] and speed up computation by applying Gaussian
convolutions for the histogram binning. They named their
descriptor DAISY, due to the flower like arrangement of the
local image regions for histogram creation. Daisy is much
faster to compute than SIFT, which allows its descriptors to
be calculated densely for every image pixel, enabling wide-
baseline stereo matching. They compare DAISY with SIFT,
SURF, NCC and pixel difference by creating dense depth
maps from stereo images. Ground truth was obtained by
using a laser-scanner depth-map. DAISY and SIFT perform
equally well and outperform the others. The speed up of
DAISY in relation to SIFT is due to the replacement of
the weighted sums from SIFT by fast-to-compute Gaussian
convolutions, which prove to be advantageous for FPGA
implementation as well. Calculating the DAISY descriptor
for different orientations reduces to shifting values of his-
tograms, which is much better suited for FPGA design than
the patch rotation of SIFT. The process of histogram rotation
is visualized in figure 1 and explained in depth in section III-
A.2.

Winder et al. [16] explored the possibility to quantize
each entry of the DAISY descriptor and found that in
general 4 bits per entry are sufficient when using PCA
and 2 bits without prior PCA dimension reduction. Advice
is given for the best DAISY setup for the applications in
object recognition, real time mobile devices and for large
data bases. Their paper shows that even the lowest di-
mensional DAISY descriptors with very simple computation
has matching capabilities comparable to SIFT, while higher
dimensional descriptors even outperform SIFT.

In summary, DAISY natively supports its implementation
on FPGA, because it treats every pixel in the same way.
Also, the usage of Gaussian masks for weighting reduces the
necessary number of multiplications and additions because
Gaussian convolutions are separable and symmetric, thus
reducing the required amount of resources. Additionally,

(a) Unrotated DAISY descriptor. Left: Center histogram and 8
histograms on ring 1, with the standard numbering. Right: The
eight entries of the single histogram R1-0.

(b) Rotated DAISY descriptor. Left: New numbering of the his-
tograms. Right: New numbering of the entries of one histogram
(previously R1-0, now R1-6).

Fig. 1. Descriptor alignment for rotation invariance.

the DAISY setup allows to make the descriptor rotation
invariant by rotating the descriptor itself, instead of the
full input patch, which requires less control signals and
therefore simplifies the design. It should be noted, though,
that the descriptor can only be rotated to discrete orientations.
However, it has been shown in [15] that DAISY performs
at least as good and often better than SIFT on pre-rotated
patches. The effect of the limitation to discrete rotation
angles is evaluated in section III-C.

III. O-DAISY ALGORITHM

This section briefly describes the original DAISY algo-
rithm. It is not intended to give full insight and the interested
reader is referred to [4] or [17] for more details. We follow
the same nomenclature as Tola et al. in [4] and [17].
Beginning with a short introduction of DAISY, this chapter
explains how the rotation invariant O-DAISY descriptor is
derived. Finally, O-DAISY is benchmarked against state-of-
the-art feature descriptors.

DAISY samples local gradient information in the way
visualized by figure 2. Each circle represents one histogram
region, which is part of the descriptor vector. Each histogram
represents the gradient orientations within this region. The
gradient is split into H discrete orientations, so each single
histogram has H entries. The algorithm uses Q rings in log-
polar arrangement around the center on which histograms
are sampled. T represents the number of histograms (circles
in figure 2) on each ring. Therefore, the resulting descriptor
has Ds = (Q∗T +1)∗H entries.

Our DAISY implementation uses H = 8 discrete gradient
orientations, Q = 2 rings and T = 8 histograms on each ring,
which means that the resulting feature vector has in total
Ds = 136 entries.



Fig. 2. DAISY descriptor with 2 rings and 8 angular elements: Each
circle represents one histogram region footprint. The radius of each circle
is one time the standard deviation σ . The center of each circle represents
the sample position of this specific histogram. H=8, Q=2, T=8.

A. Rotational Invariance

A local image descriptor is called rotation invariant, if it is
invariant to rotations around the camera’s optical axis. Such a
behaviour is desirable in the case of object detection, because
the relative pose of objects to the camera is unknown. Many
image descriptors, like SIFT, rotate the image patch around
an interest point, according to the patches main orientation.
This is usually done before the descriptor itself is calculated.
Therefore, the descriptor algorithm is not affected by the
main orientation, only its input changes. However, this is a
costly process since the patch rotation requires bilinear inter-
polation for many pixels. The DAISY feature descriptor does
not provide rotational invariance. However, the properties
of DAISY allow to achieve rotational invariance relatively
easy. We approximate the image patch pre-rotation at discrete
angles without much overhead, by rotating the descriptor
instead of the input patch. For this purpose, the interest
points’ main orientation is calculated. In 1) we propose a
novel, fast assignment of this main orientation. Inspired by
[16], the main orientation is used to align the descriptor, as
described in 2). The rotation invariance of this approach is
evaluated and further improvements are presented in 3).

1) Main Orientation Assignment: The original SIFT algo-
rithm [2] calculates gradient orientation θ and magnitude m
at each pixel of the feature point area to form an orientation
histogram with 36 bins. Each bin corresponds to 10◦ of the
full 360◦. The gradient orientation of each pixel within a
given radius around the interest point is weighted by its
magnitude and a circular Gaussian window, with a sigma
of 1.5 times the detected scale. Peaks in the histogram
correspond to dominant orientations. SIFT allows to assign
multiple dominant orientations, for histogram peaks within
80% of the highest peak.

The original DAISY algorithm already calculates values
very similar to SIFT’s main orientation histogram. DAISY
usually discretizes the gradient orientations into 8 directions,
which means that every histogram bin corresponds to 45◦

of the full 360◦. The gradient magnitude is calculated for
each discrete direction i, resulting in one gradient image per
direction, the so called orientation maps Goi . Each orientation
map is now sequentially smoothed with Gaussian masks Σk,
resulting in eight smoothed orientation maps GΣk

oi , one for
each orientation i. The magnitude of the smoothed gradients
are the entries that will be written into the final descriptor.

Now, we will show that the entries of the smoothed orien-
tation maps GΣk

oi (x,y) at a interest point location (x,y) are
similar to the entries of SIFT’s orientation histogram for the
same interest point: Each orientation map Goi(x,y) contains
the magnitude of the gradients in the discrete direction i, so
it is a discrete version of SIFT’s orientation θ and magnitude
m calculation. The convolution of the orientation maps with
a Gaussian mask is similar to creating the SIFT orientation
histogram with entries weighted by a Gaussian mask and
their gradient magnitude. In summary, GΣk

oi (x,y) is similar to
SIFT’s orientation histogram for a point (x,y), with the main
differences being the larger angle discretization.
To assign the orientation based on the gradient informa-
tion of the largest possible area around the interest point,
we use the convolved orientation maps with the largest
sigma, GΣ2

oi (x,y), at a interest point location (x,y). Our O-
DAISY implementation searches for the maximum values
in the convolved orientation map maxi(G

Σ2
oi (x,y)), just as

SIFT searches for peaks in the orientation histogram. The
corresponding direction i of these maxima define the main
orientations. We allow up to three main orientations if the
2nd and 3rd maxima are within 80% of the highest peak.
Imagine GΣ2

oi (x,y) to be a histogram equivalent to the one
shown on the right side of figure 1. In that figure, obviously
orientation number 2 constitutes the maximum.
Note that even if we explained the orientation assignment
for a specific keypoint position, the main orientation can be
computed without much overhead for every pixel, because
the convoluted orientation maps already exist for every pixel
location.

2) Descriptor Rotation: After calculating the main ori-
entation, the descriptor itself is made rotation invariant by
aligning it with the main orientation. First, every single his-
togram, i.e. circle in figure 2, is reordered internally, so that
histogram bin 0 now represents the magnitude of the main
orientation within its local area. After each single histogram
is internally aligned with the main orientation, the whole
descriptor needs to be rotated. The center histogram stays
on the same position within the descriptor. The numbering
of the histograms on ring one are changed in the same way
as the internal histograms. The same applies for all following
rings.
To illustrate the process, we assume the main orientation is
2 (90◦). Then, within each single histogram the old bin 2
becomes the new rotated bin 0. The old bin 3 becomes bin
1 and so forth, until the old bin 1 becomes the new bin
7. In the same way, the histogram numbering on the rings
is changed. The process is visualized by figure 1. If there is
more than one main orientation the descriptor is sequentially
aligned to all of them and up to three descriptors are created.
We found, similar to Lowe in [2], that the multiple oriented
descriptor increased the matching accuracy significantly.

B. Test Scenario

We benchmark the proposed O-DAISY descriptor in the
same way as [8], where Calonder et al. compare their BRIEF
descriptor with SURF. The test data originates from the



Fig. 3. Main Orientation Assignment: Matching accuracy as a function
of the rotation angle for an artificially rotated wall image using the rotation
variant original DAISY (black), DAISY with rotational invariance using
T=H=8 (red), and rotation invariant DAISY with T=H=16, with descriptor
size reduced to 136bins (magenta)

Oxford’s Visual Geometry Group1 and consists of original
and transformed image pairs from different scenes.
A SIFT like Difference of Gaussian (DOG) interest point
detector generates a set of keypoints on the first image
of the investigated test set. The keypoints are projected
into each transformed image in the set using the provided
homographies. Descriptors for all keypoints are calculated.
The keypoint descriptors of the original image constitute
the original descriptor database, while the descriptors of
the transformed image create the test descriptor database.
For the rotation invariant case, up to three descriptors are
calculated per keypoint for the original descriptor database, if
there are multiple maxima in the main orientation histogram.
For the test descriptor database, only one descriptor per
keypoint is allowed, because the detected orientation in the
test image is most likely to fit one of the three detected ori-
entations in the original database, if the keypoints orientation
is ambiguous.
For each descriptor in the test database, the closest neighbour
in the original database is searched and classified as a match.
We apply a brute force search using the FLANN library [18].
A match is considered correct, if its two points are correlated
by the homography. The matching accuracy is calculated
as the amount of correct matches over the number of all
transformed keypoints that lie within the image.

C. Results

Figure 3 shows the evaluation results of the matching
accuracy in proportion to the rotation angle between original
and artificially rotated versions of itself. By comparing the
black curve representing the original DAISY descriptor and
the red curve showing the proposed O-DAISY descriptor
with the modifications described above, it is obvious that
the described orientation assignment and descriptor rotation
greatly improve the invariance of DAISY against rotation.
However, the red curve also shows that using eight discrete
gradient directions with an enclosing angle of 45◦ each,
results in a significant matching accuracy drop down, when
the test image’s rotation is right in the middle between
two discrete orientations. To compensate this behaviour we
doubled the number of discrete angles. This comes with two

1http://www.robots.ox.ac.uk/˜vgg/research/affine/

major downsides. First, increasing both T and H from 8 to
16 the descriptor’s size increases from 136 to 528. Second,
the single histograms would now overlap significantly and
describe one and the same area multiple times. This leads to
a lot of redundant information which might even decrease
the matching accuracy. To avoid these two problems, we
propose to first convolve the orientation maps for all 16
orientations, but to use only every second value within each
histogram and only every second histogram from the rings
for descriptor creation. This results in a feature descriptor
with only 136 bins, still having the shape shown in figure 2,
now only aligned more accurately to the main orientation.
Its performance is shown by the magenta curve of figure
3 which clearly does not exhibit the dramatic performance
drop down when using just 8 discrete gradient directions.

We will term the resulting descriptor O-DAISY, marking
its invariance to orientation changes. O-DAISY’s rotation
invariance is also significantly better than the one of SURF.
This can be seen by comparing figure 3 with the equivalent
test of [8], where SURF’s matching accuracy drops from
83% for 3◦ down to 63%, when the rotation angle is between
30◦ and 60◦. In comparison, O-DAISY’s accuracy stays
between 90% and 85% for all angles between 0◦ and 180◦.
It should be noted that the computational complexity for
calculating the convolved orientation maps doubles with
increasing the number of discrete orientations from 8 to 16.
However, in the FPGA design this does not increase the run
time, since all orientation maps can be smoothed in parallel
as enough resources are available.

(a) wall (b) graffiti

(c) boat (d) bark

(e) trees (f) light

Fig. 4. Evaluation of the rotation invariant O-DAISY, the original DAISY,
SURF and BRIEF-64

Additionally to the rotation test, we benchmark O-DAISY
using the Oxford library and comparing it to the original



DAISY, the rotation invariant SURF and the strongest BRIEF
descriptor, BRIEF-64 for which rotation invariance is not
specifically addressed. Figure 4 visualizes the results.
The rotation variant DAISY and BRIEF-64 outperform the
two rotation invariant descriptors O-DAISY and SURF in
scenes, where the camera’s rotation around the optical axis
is small. This is the case for the trees and light scenes, where
the camera did not move and also for the first two wall
images. It should be noted that rotation invariance usually
not only induces higher computational complexity, but also
results in lower matching accuracies in cases where rotational
invariance is not needed. This is already pointed out in [8]
and our results confirm this.
The wall and graffiti scenes are viewpoint change evalua-
tions. In the wall scene the camera is not rotated around
its optical axis and despite its rotational invariance, O-
DAISY performs almost as good as DAISY and BRIEF.
SURF is the weakest descriptor for this scene. The graffiti
scene combines large viewpoint changes of up to 60◦ with
rotation around the optical axis up to 45◦. The performance
of the original DAISY for the first two test images shows
that the log-polar arrangement makes it invariant to small
camera rotations. BRIEF does not have this behaviour and
its matching accuracy is significantly below the others. O-
DAISY outperforms SURF in this scene, but fails to provide
good accuracies for the last images, where the viewpoint
change is large.
The boat and bark scenes combine large camera rotations
with large optical zoom factors. As expected, the two rotation
variant descriptors BRIEF and DAISY fail in these scenes.
For images with zoom factors smaller than 2, i.e. the two first
boat images and the first bark image, O-DAISY outperforms
SURF, but with larger zoom factors the explicit scale invari-
ance of SURF makes it the better choice. Remember that
scale invariance is not yet explicitly addressed in O-DAISY.
This will be considered in future work.
SURF and O-DAISY perform equally well in the trees and
light scenes, but are outperformed by the rotation variant
descriptors, as mentioned above.
In summary, O-DAISY proves to be a useful descriptor
with better rotation invariance than SURF, while exhibiting
drawbacks in terms of scale invariance.

IV. FPGA IMPLEMENTATION

The DAISY algorithm is implemented on an Avnet Virtex-
6 DSP Kit. Via Ethernet the image is transferred from
the PC to the FPGA and resulting descriptors are returned
from the FPGA to the PC. The main part of the FPGA
design is done using Xilinx’ System Generator toolbox for
Matlab/Simulink. Figure 5 gives an overview of the FPGA
implementation. First, the image stream is pre-smoothed by
a Gaussian mask. After the gradients in x and y direction are
calculated, the discrete gradient orientations are calculated.
The blocks for smoothing the orientation maps are imple-
mented as subsequent Gaussian filters. The blocks take the
separation and symmetry possibilities into account, which are
described in [11]. The 1D filters are implemented using the

Fig. 6. FPGA Design: Descriptor rotation according to the main orientation.
The grey blocks for the internal rotation are detailed in the bottom left corner

FIR Compiler from System Generator that uses DSP slices.
After all three smoothed orientation maps have been cal-
culated, the single histograms are read out from the correct
positions around the current middle pixel. This is fulfilled by
the light blue block, by delaying the stream of smoothed ori-
entation maps using block RAMs as line buffers. The values
on the correct positions from the appropriate orientation map
are concatenated to the feature vector. This feature vector
is normalized in the green block and finally, it is rotated
according to the main orientation in the last grey-blue block.
The orientation alignment follows the algorithm described
above. First every single histogram is aligned with the main
orientation, as it can be seen in the bottom left corner of
figure 6. Then the histograms exchange positions within the
vector which is shown in the main part of figure 6.

A. Quantization Results

Floating point operations on FPGAs are very resource
intensive, therefore algorithms need to be quantized to a
fixed bit accuracy. For this reason, we used the wall test
scene to evaluate the necessary number of bits for the critical
intermediate results of the algorithm.

The unsmoothed orientation maps are critical, since they
build the basis for the costly Gaussian convolutions. Also,
the smoothed orientation maps are critical, because they
need to be buffered for the later histogram sampling. Finally,
the normalized descriptor are transferred over Ethernet and
stored on the PC and should therefore be as small as possible.
Figure 7(a) shows that using less than three bits for the un-
smoothed orientation maps Goi results in impossible match-
ing. More than five bits do not improve the accuracy, so 5
bits are used for Goi .
Figure 7(b) presents the evaluation for the smoothed ori-
entation maps GΣk

oi (x,y). The matching accuracy is almost
zero for up to five bits. The steady grow of accuracy from



Fig. 5. DAISY Algorithm FPGA Design: Overview

(a) Unsmoothed orien-
tation map: 5 bits

(b) Smoothed orienta-
tion maps: 9 bits

(c) Descriptor after nor-
malization:4 bits

Fig. 7. Quantization Matching accuracy as a function over the number
of bits for using the wall scenario

thereon stops when 9 bits are reached, so 9 bits are used for
GΣk

oi (x,y). By increasing the number of bits for each entry of
the normalized descriptor from 1 to 4, the matching accuracy
grows continuously for all test images, as can be seen in
figure 7(c). Higher accuracies do not improve the results,
therefore 4 bits are used for each normalized descriptor entry,
so that a descriptor has 544 bits in total.

V. CONCLUSION AND OUTLOOK
This paper presented O-DAISY, a rotation invariant ex-

tension of the novel feature descriptor DAISY. Experiments
on a standardized test set showed that the adopted de-
scriptor is able to outperform current state-of-the-art fast-to-
compute descriptors, like SURF and BRIEF. Additionally,
we described an FPGA implementation of O-DAISY, which
enables real time performance of the descriptor calculation.
Future work will address the problem of scale invariance.
The original DAISY descriptor proved to be invariant to
scale changes up to a factor of 2. To further improve scale
invariance one could scale the sampling schema of the local
histogram areas with a scale determined by a feature detector
or coming from information of a RGB-D camera device like
Microsoft’s Kinect.

REFERENCES

[1] C. Parlitz, M. Haegele, P. Klein, J. Seifert, and K. Dautenhahn,
“Care-o-bot R© 3 - rationale for human-robot interaction design,” in
Proceedings of 39th International Symposium on Robotics (ISR),
Seoul, Korea, 2008.

[2] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[3] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer Vision–ECCV 2006, pp. 404–417, 2006.

[4] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense
matching,” in Proc. CVPR, Citeseer, 2008.

[5] G. Shakhnarovich, Learning task-specific similarity. PhD thesis,
Massachusetts Institute of Technology, 2006.

[6] M. Oezuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE transactions on pattern anal-
ysis and machine intelligence, pp. 448–461, 2009.

[7] S. Taylor, E. Rosten, and T. Drummond, “Robust feature matching in
2.3s,” Computer Vision and Pattern Recognition Workshop, 2009.

[8] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
Robust Independent Elementary Features,” in European Conference
on Computer Vision, September 2010.

[9] B. Tippetts, S. Fowers, K. Lillywhite, D. Lee, and J. Archibald,
“Fpga implementation of a feature detection and tracking algorithm
for real-time applications,” in Proceedings of the 3rd international
conference on Advances in visual computing-Volume Part I, pp. 682–
691, Springer-Verlag, 2007.

[10] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architec-
ture of optimised SIFT feature detection for an FPGA implementation
of an image matcher,” in Field-Programmable Technology, 2009. FPT
2009. International Conference on, pp. 30–37, IEEE, 2009.

[11] V. Bonato, E. Marques, and G. Constantinides, “A parallel hardware
architecture for scale and rotation invariant feature detection,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 18,
no. 12, pp. 1703–1712, 2008.

[12] H. D. Chati, F. Muhlbauer, T. Braun, C. Bobda, and K. Berns,
“Hardware/software co-design of a key point detector on fpga,” Field-
Programmable Custom Computing Machines, Annual IEEE Sympo-
sium on, vol. 0, pp. 355–356, 2007.

[13] J. Svab, T. Krajnik, J. Faigl, and L. Preucil, “FPGA based Speeded Up
Robust Features,” in Technologies for Practical Robot Applications,
2009. TePRA 2009. IEEE International Conference on, pp. 35–41,
IEEE, 2009.

[14] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE transactions on pattern analysis and machine
intelligence, pp. 1615–1630, 2005.

[15] S. Winder and M. Brown, “Learning local image descriptors,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2007.
CVPR’07, pp. 1–8, 2007.

[16] S. Winder, G. Hua, and M. Brown, “Picking the best daisy,” in
Proceedings of the International Conference on Computer Vision and
Pattern Recognition (CVPR09), (Miami), June 2009.

[17] E. Tola, V. Lepetit, and P. Fua, “DAISY: An Efficient Dense Descriptor
Applied to Wide Baseline Stereo,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, pp. 815–830, May 2010.

[18] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Application VISSAPP’09), pp. 331–340,
INSTICC Press, 2009.


