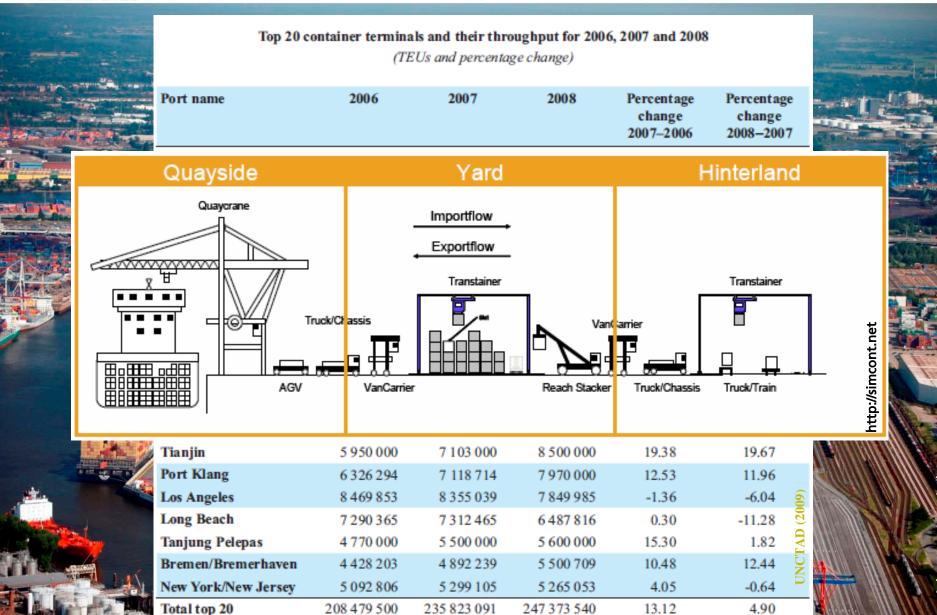


THE FRAUNHOFER-GESELLSCHAFT

Improving logistics .. is about structure and processes

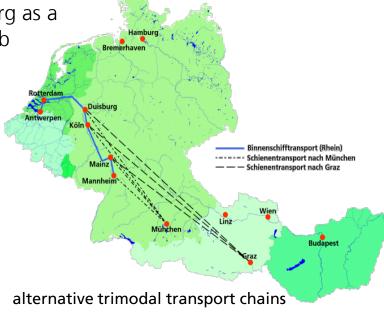

- Analysis of distribution and consolidation strategies
 Determination of optimal stratification (modes of transport, types of storage, capacities, inventory management etc.)
 - Positioning of logistics facilities:

 Optimization of # of locations and allocation of facilities
- Optimization of costumer allocations:
 Calculation of distribution areas determined by storage capacities
 - Strategical and tactical route scheduling: Determination of solid standard runs and required vehicles
 - Calculation and controlling of transport costs: Calculation of transport costs due to given tariffs, verification of forwarder's bills / tariffs / offers

Logistics enables the world to come together

200

Reference - Examination of development potentials and Logistics Strategy of Duisburg Port


Themes which have been examinated

 Chances for development / obstacles and future demands for logistics sites and services

 Possibilities to strengthen the position of Duisburg as a sea port hinterland-hub

Approach

- Evaluation of the 3 column strategy:
 Infrastructure logistic services strategic cooperations
- Analyses of the situation of competition
- Analyses of options for new businesses and competitive situations
- Calculation of models to compare different Hinterland connections

SMART-CM: Responding to challenges

EU funded project with Fraunhofer including some of

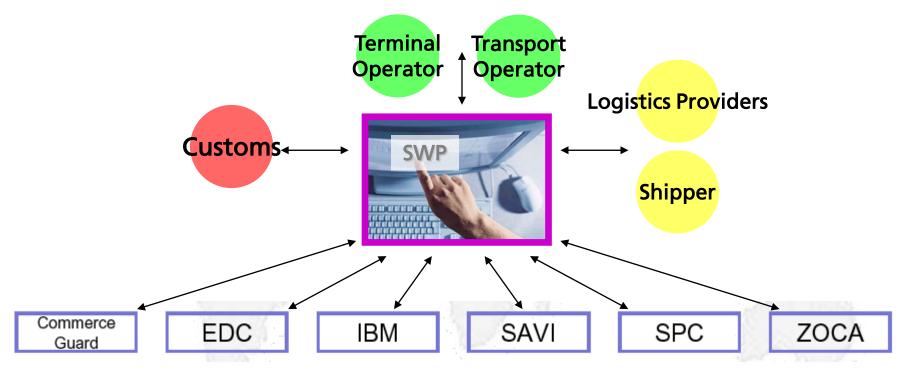
the Worlds' largest

- terminal operators,
- logistic service providers,
- shipping companies,
- technology providers and
- national customs organisations

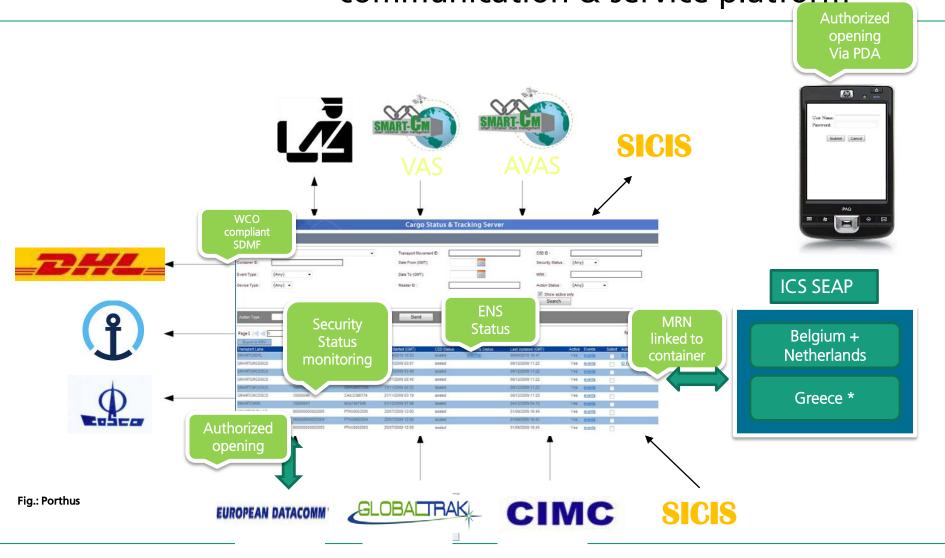
aiming at improved security for container transport, beneficial for business and logistics

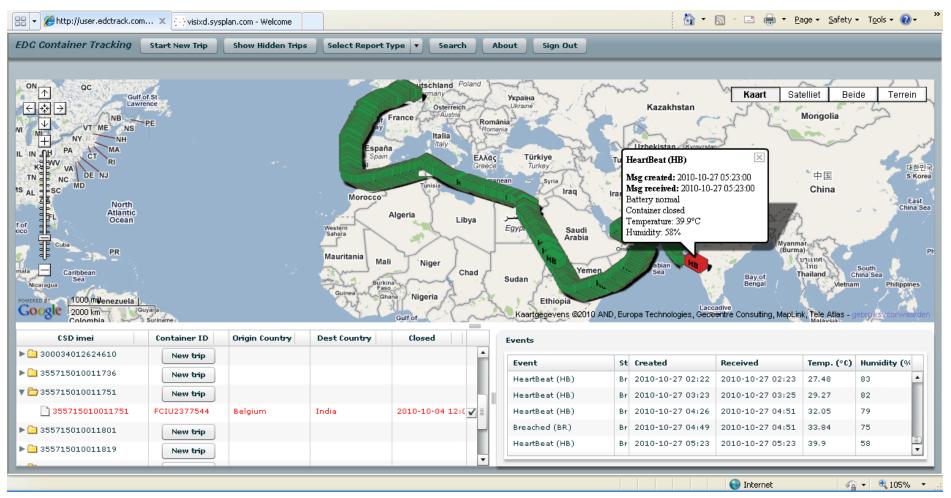
- Increase supply chain visibility
- Achieve faster throughput in transport corridors (green lanes)
- Accomplish high level chain security (continuous control)
- Improve productivity in chain operation

responding to the challenges of the future i.e.:



SMART-CM approach (1/2) "Single Window" platform


Container Security Technology (CST): active RFID / satellite comms / multi-sensoric units


SMART-CM approach (2/2) neutral communication & service platform

Permanent, pro-active tracking & tracing / controlling

EffizienzCluster LogistikRuhr – one of 15 winners of Germany's leading-edge research competition

- Supporting the strategic development of leading-edge clusters in science and economy
- The Leading-Edge Cluster competition is intended to take Germany to the top of the league of technologically advanced nations.
- The high-performance clusters formed by business and science which join into strategic partnerships are set to boost Germany's innovative strengths and economic success.
- » three rounds of competition: in each round, up to EUR 200 million will be made available to up to five Leading-Edge Clusters
- » the funding of Leading-Edge Clusters is based on a common strategy that starts from the respective strengths of each cluster and is aimed at the definition of future development objectives

Main Goals

Efficient management of resources

- Efficient production and transport of goods
- Efficient handling of resources and environment

Keep individuality

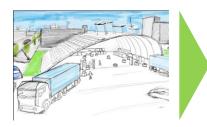
- Individual supply of goods and information
- Keep individual mobility

Urban supply safety

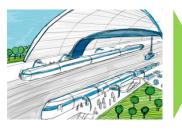
- Solid and save logistics for urban areas
- Urban logistics systems in a global context

Guiding Topics

Management of goods traffic


Focus on environment

Urban supply


Activation of cluster potential

Mutable logistics systems

Logistics-as-a-Service

Logistic construction competence (education)

MIB - "less stress construction sites"

SPONSORED BY THE

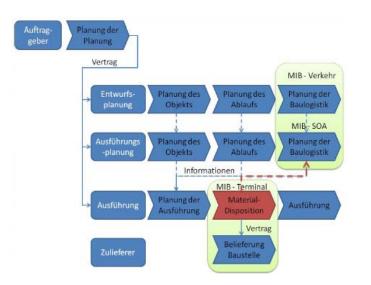
Minimalinvasive Baumaßnahmen "less stress construction sites"

Partners in the research project

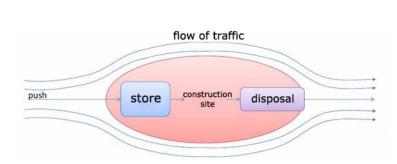
- Sonepar Deutschland Region West GmbH
- REICHEL Projektmanagementgesellschaft mbH
- GEOsat GmbH
- Gradwohl Konzept
- Fraunhofer IML

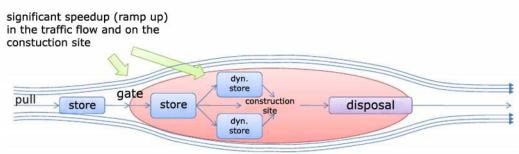
Duration and budget

Project start: October 1st, 2010


Project duration: 18 months

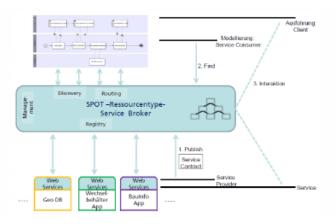
Project volume of approx. 1 mio Euro





Objectives

- Improving the traffic flow in the surroundings of constructional projects
 - 15 % less stress on the traffic flow by constructional projects
- Reducing the environmental impact by 10%
 - direct influence on the construction site by means of innovative tools
 - new global aims in the sense of the ecological view
- Reduction of the construction duration by 5%
 - intended by optimized supply and waste management



First Achievements

Development of a technical concept

 based on requirements engineering with an early integration of all project stakeholders

Development of the organizational concept

- transparent presentation of the system
- display of the demands on data transfer inside and to the system

Development of a marketing concept

- determination of the surplus value and potential of the project
- holistic approach is very unusual in the construction sector

Current challenges

- difficulty in finding a constructional project, which appears as a pilot project for the research scheme
- established structures impede the access of a new strategy and service to the market

ELA - Efficiency in Logistics Facilities

SPONSORED BY THE

Project Partners and Framework

Partners

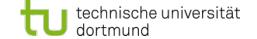
- ESG Elektroniksystem- und Logistik-GmbH
- TU Dortmund, Institute of Transport Logistics (ITL)
- DB Mobility Logistics AG
- AMETRAS nobab GmbH
- Logwin Solutions Deutschland GmbH
- Kühne + Nagel (AG & Co.) KG

Project volume

about 3.65 m. €

Duration

June 1, 2010 – May 31, 2013


EcoSiteManager: The development of this software prototype is based on three areas of innovation:

unitCV

- Storing relevant shipment information in an electronic CV and IT-platform
- HugO
- Application of Human guided optimization methods and therefore interactive software
- X-Ray
- Monitoring function of all objects and resources within the system

ELA Projects and methods

Multimodal Promotion

SPONSORED BY THE

Multimodal Promotion -Project targets

- Development of a Web 2.0 tool for the simple design of multimodal door-2-door transport chains without previous knowledge about the combined transport
- Implementation of a company-wide consolidation of transport streams, including drayage and haulage planning
- Bundling small quantities into large volumes
- Improvements of sustainability and efficiency

Trimodal D2D transport chain design

Company-wide consolidation

Evaluation of alternatives (cost, time, CO2e)

Multimodal Promotion - Platform's main functions

- Interface between operators and users
- Schedule check
 - The aim is the assignment of appropriate schedules to the transportation orders
 - Simple or detailed examination of the own transport volumes
- Timetable formation
 - The aim is to consolidate the transportation amounts and to create new transportation alternatives
 - Calculations are based on all data entered by the users
- Local traffic planning
 - The goal is the reduction of truck trips in pre-and post stages through a comprehensive customers' tours planning
 - Building of FTL by bundling the LTL

Summary

Globalization is an ongoing process providing challenges and huge opportunities for individuals and institutions.

Logistics needs long-term planning as well as short-term **flexibility**, innovative, and affordable solutions.

Logistics and mobility of the future will have to be robust and safe, ecological and economical feasable.

Thank you.

Prof. Dr.-Ing. Uwe Clausen

Faculty of Mechanical Engineering – Institute of Transport Logistics, TU Dortmund

Phone: +49 231 755 6335

E-Mail: clausen@itl.mb.tu-dortmund.de

Homepage: http://www.itl.tu-dortmund.de

technische universität dortmund

Director, Fraunhofer-Institute for Material Flow & Logistics (IML) Dortmund Chairman, Fraunhofer Transport Alliance, Germany

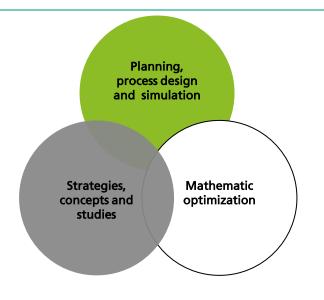
Phone: +49 231 97 43 400

Email: Uwe.Clausen@iml.fraunhofer.de

Homepage: http://www.iml.fraunhofer.de

17 Institutes from the Fraunhofer **Transport Alliance**

- The Fraunhofer Transport Alliance develops adequate technical and conceptual solutions for the public and industry partners and puts transport-related research solutions into practice.
- The Fraunhofer Transport Alliance focuses and communicates existing core competencies in transport-related research and ...
- ... develops integrated solutions by means of cooperations between Fraunhofer-Institutes



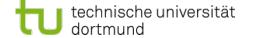
Institute of transport logistics-Interdisciplinarity as a factor of success

Methods

- Analyzing of data and processes, Planning
- Material flow simulation
- Empiric studies
- Development of an Operating Number System
- Mathematical Modeling
- Optimization algorithms, design of prototypes

Topics

- Logistical systems
- Transportation Planning
- Monitoring of Outsourcing
- Commercial transport



Fraunhofer IML

> 200 researchers in ...

SECTION MATERIAL FLOW SYSTEMS

Quality Management and Organization Systems, Intralogistics and IT Planning, Autonomous Transport Systems, Machines and Facilities, Packaging and Trade Logistics, Software Engineering

SECTION ENTERPRISE LOGISTICS

Enterprise Planning, Supply Chain Engineering, Production Logistics, Maintenance Logistics, International Enterprise Development

SECTION LOGISTICS, TRAFFIC, ENVIRONMENT

Environment and Resource Logistics, Traffic Logistics, Health Care Logistics, Project Center Airport, Project Center Traffic, Mobility and Environment, Center for Maritime Logistics and Services

Logistics, Traffic, Environment Prof. Dr.-Ing. Uwe Clausen

ENVIRONMENT AND RESOURCE LOGISTICS

Dr.-Ing. Marc Schneider

Disposal and closed loop economy

Environment and resources

Building logistics

TRAFFIC LOGISTICS

Prof. Dr. Alex Vastag

Distribution logistics and procurement planning

Network planning and dispatching Information and communication systems

Multimodal logistics

PROJECT CENTER AIRPORT

Dr.-Ing. Heinrich Frye

Services

Airfreight handling Baggage handling

Ground handling

Check-in control

Air traffic security

PROJECT CENTER TRAFFIC, MOBILITY AND ENVIRONMENT

Dipl.-Ing. (FH)
Wolfgang Inninger
Safety and logistics

Traffic planning and simulation

Mobility, information logistics for traffic and tourism

HEALTH CARE LOGISTICS

Dr.-Ing. Sebastian Wibbeling

Pharma-Logistik

Hospital Logistics
External Logistics

in Health Care
Pharmaceutical

Logistics

Home and Senior Care

CENTER FOR MARITIME LOGISTICS AND SERVICES

Prof. Dr.-Ing. Carlos Jahn

Sea Port planning and maritime fleet management

Forecast, professional information and strategy

Process- and ITmanagement

