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Abstract

The slow progress of international climate change negotiations un-
der the UNFCCC has led to calls for discussions in other, non-global
fora, so-called "climate clubs". While the existence of stable agree-
ments has been extensively studied in a global setting, cooperation of
countries in such a club presents a new situation. I account for these
specific circumstances by applying the concept of a subgame of a co-
operative game to the game of global negotiations. The results are less
optimistic than in the case of global negotiations, and the existence of
a stable agreement in the climate club crucially depends on damage
and abatement cost parameters of club members and outsiders. I also
find that heterogeneity of countries negatively affects the chances of
cooperation. An example is provided by the application of the model
to the case of the Group of Twenty.
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Highlights
• I analyze the stability of climate cooperation in a non-global state
club.

• For club members, high damages from climate change lead to stable
cooperation.

• For outsiders, high damages hinder cooperation inside the club.

• Heterogeneity of countries negatively affects stability of cooperation.

• The Group of Twenty is used as an application of the theoretical model.
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1 Introduction
The international negotiation process about limiting global greenhouse gas
(GHG) emissions under the United Nations Framework Convention on Cli-
mate Change (UNFCCC) has so far failed to produce an agreement about
global GHG emission reductions. The process requires consensus among all
countries, leading to lengthy negotiations and slow progress. Also, com-
promises reached tend to represent the lowest common denominator of all
countries. These downsides became apparent when the 2009 Conference of
the Parties (COP) in Copenhagen failed to reach a global agreement, despite
the presence of over 100 heads of state and government.

As an alternative to the current UNFCCC process, some scholars call
for discussions in other, non-global fora (see e.g. Bodansky, 2002; Asheim
et al., 2006; Naím, 2009; Victor, 2009; Eckersley, 2012; Weischer et al., 2012;
Grasso and Roberts, 2014). The literature suggests that advantages of these
so-called climate clubs over global negotiations might be faster negotiations,
higher ambition from the club members, better participation from private
actors and more equitable agreements (Biermann et al., 2009). Simple game-
theoretic models indeed imply that negotiations in small groups can aid
the coordination between countries, and that global negotiations can be
supported by prior agreements of a few countries (Smead et al., 2014). An
analysis of UNFCCC high-level segment speeches suggests that climate clubs
could reduce negotiation complexity by eliminating secondary demands from
country positions (Bagozzi, 2014). Most climate clubs try to ensure that
they act complementary to the UNFCCC (Widerberg and Pattberg, 2015)
and Widerberg and Stenson (2013) claim that climate clubs could lay the
groundwork for a global climate deal at the 2015 COP in Paris.

However, from an empirical perspective, not enough is known about
the effectiveness of different forms of climate governance to evaluate the
proposed advantages of climate clubs (Jordan et al., 2015). Biermann et al.
(2009) point out several problems of climate clubs, such as “forum shopping”
by powerful states and the potential for a “race to the bottom” between
competing clubs. Biermann et al. (2009) conclude that fragmentation of the
global climate governance might do more harm than good.

The number of climate clubs has increased substantially since 2005, as
negotiations on a global agreement began under the UNFCCC (Weischer
et al., 2012). Many of these clubs focus on specific issues, such as the pro-
motion of renewable energy or energy efficiency, or the reduction of defor-
estation or short-lived greenhouse gases (Widerberg and Stenson, 2013). In a
survey of climate negotiation participants (Hjerpe and Nasiritousi, 2015), the
two most frequently mentioned clubs were state clubs: the Major Economies
Forum On Energy And Climate (MEF), which brings together the 17 largest
economies of the world, and the Group of Twenty (G20). The topic of cli-
mate change was featured in the final declaration of all G20 leaders’ summits
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since the introduction of regular summits in 20081.
Whenever a prospective climate agreement among a group of countries

is discussed, the question arises whether the agreement would be stable,
that is whether all participating countries would have an incentive to sign
it. Theoretical examinations of the stability of international climate co-
operation usually conclude that cooperation is only stable among very few
countries (e.g. Barrett, 1994; Carraro and Siniscalco, 1993; Diamantoudi and
Sartzetakis, 2006), although modifications of the model allow for more sub-
stantial cooperation (see Hovi et al., 2014, for an overview). Some studies
use this setup to analyse cooperation among smaller country groups. For
exclusive membership games, Finus et al. (2005) find that exclusive member-
ship stabilizes some coalitions, compared with open membership. However,
these coalitions only marginally improve emission reductions over the non-
cooperative equilibrium. Asheim et al. (2006) examine two parallel regional
agreements and find that the two agreements are able to improve participa-
tion over a single agreement. Nordhaus (2015) studies clubs with penalty
tariffs on non-participants. He finds that the penalty greatly enhances par-
ticipation in the club and that this structure makes emission reductions near
the global optimal level possible. However, such a penalty might not be com-
patible with WTO rules (see Jaspers and Falkner, 2013, for an overview of
the literature).

In all of these studies, the participation of countries in a coalition evolves
during the course of the game, that is the membership of the climate club
changes. However, some of the clubs that are discussed as potential fora for
a climate agreement have a fixed set of members and exist independently
of the climate issue. The best example is given by the G20, which is often
cited as a potential climate club (Naím, 2009; Hjerpe and Nasiritousi, 2015).
It was founded as a forum for international economic cooperation and its
membership has not changed since its inception. Consequently, participa-
tion in such a club is not the result of a game of climate cooperation, as
previous studies assert. Rather, the club and its members are given, and the
question becomes whether stable climate cooperation in the club is possible.
The analysis of this question requires a different framework, which accounts
for a given club with fixed membership.

In this paper, I analyze the stability of climate cooperation in pre-
existing state clubs with fixed membership, such as the G20. Countries
are divided into two distinct groups: those who are supposed to come to
an agreement on legally binding commitments for all countries in this group
(the club members) and the remaining countries, who benefit from commit-
ments made by the club members, but do not commit to emission reductions
themselves (the outsiders).

1See Shaw (2011) for an overview of G20 decisions on climate change.
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As decision making in state clubs like the G20 requires approval of all
members, an agreement would have to include all club members. Therefore,
I analyse the existence of a stable agreement using the core stability concept
by Chander and Tulkens (1997), which incorporates such a unanimity rule.
That is, I check whether the given cooperative game has a (non-)empty
core. So far, this concept has only been used to study global cooperation.
As a result of the unanimity rule, a stable global agreement always exists
if the functions describing country behaviour satisfy certain assumptions2

(Chander and Tulkens, 1997; Helm, 2001). I modify the model of global co-
operation for the study of cooperation among state clubs, using the concept
of a subgame. While this concept has been used to study several types of
cooperative games3, it has so far not been employed in the context of the
game of climate cooperation. I provide an analytical solution to the game
with quadratic functions and determine the set of parameters for which a
stable agreement among club members exists. I first assume that coun-
tries inside the club and countries outside the club are symmetric among
their respective group. This assumption is later dropped and the impact
of heterogeneous countries on the stability of a club agreement is shown.
Finally, I apply the model to the case of the G20, using abatement cost
estimates from a techno-economic model and damage cost estimates from
an integrated assessment model.

The model is presented in Section 2. Section 3 gives theoretical results
for the symmetric and the asymmetric case. Section 4 shows the application
of the model to the case of the G20. Section 5 concludes and gives an outlook
for future work.

2 The model
The setup is based on the model of transfrontier pollution by Chander and
Tulkens (1997), hereafter CT model. Let N = {1, .., n} be the set of players
(countries) involved in the cooperative game. The model by Chander and
Tulkens then consists of these components for all countries i ∈ N :

• emissions Ei ∈ R.

• production function Pi(Ei) : R → R, depending on a country’s own
emissions. It is assumed to be monotonically increasing up to a base-
line emission level E0

i , differentiable and concave.
2Monotonicity, differentiability and convexity / concavity. See Section 2 for a detailed

description of the model.
3The subgame concept was introduced by Shapley and Shubik (1969) to study market

games. Inter alia, it has also been used to study partition, packing and covering games
(Deng et al., 2000; Bietenhader and Okamoto, 2006)
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• damage function Di(EN ) : R→ R, depending on global emissions EN .
It describes the damages incurred by environmental pollution, climate
change in this case. The function is assumed to be monotonically
increasing, differentiable and convex.

Each country’s utility is determined by the difference of production and
damages, Pi(Ei) − Di(EN ). Therefore, it depends on the emissions of all
other players. In order to determine the value function v of the game, assume
that a coalition S ⊆ N forms. Members of the coalition maximize joint
utility of all coalition members. Non-members split up into singletons and
maximize individual utility4. It leads to the following parallel optimization
problems:

max
(Ei)i∈S

∑
i∈S

[Pi(Ei)−Di(EN )] (2.1a)

max
Ej

Pj(Ej)−Dj(EN ) ∀j /∈ S (2.1b)

Assigning the result of (2.1a) to v(S) defines the value function of the global
game. An agreement is a distribution of the value of the grand coalition
v(N) among all countries. The core of the game is the set of agreements,
such that no country or coalition of countries has an incentive to deviate
from the agreement. An agreement that lies in the core is called stable.
Helm (2001) showed that the core of the game is not empty for all functions
fulfilling the assumptions mentioned above5. This result provides a useful
benchmark against which the stability of agreements inside a climate club
can be compared.

I model negotiations of climate clubs as a subgame6 of the cooperative
game in the CT model. The following definition is due to Peleg and Sud-
hölter (2007).

Definition 1. Let (N, v) be a game. A subgame of (N, v) is a game (T, vT )
where ∅ 6= T ⊆ N and vT (S) = v(S) for all S ⊆ T . The subgame (T, vT ) is
also denoted by (T, v).

Let T ⊂ N be the set of club members and let R = N\T contain the out-
siders. Then, the subgame (T, v) assesses the existence of a stable agreement
among club members, while outsiders behave as they would in the global

4This so-called γ-assumption is further justified in Chander (2007), where it is shown
that it corresponds to the behaviour in an equilibrium of the infinitely repeated game,
when players are farsighted.

5Specifically, these are monotonicity, differentiability and convexity / concavity.
6Note that the subgame concept used in this paper is different from the concept of a

subgame of a non-cooperative game in extensive form. Therefore, it also bears no relation
to the notion of a “subgame-perfect equilibrium”.
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game. In accordance with the behaviour outlined above, outsiders maxi-
mize individual utility, while their payoff depends, inter alia, on the level
of emissions of T . Therefore, R benefits from cooperation in T . However,
decreasing emissions from T lead to increasing emissions from members of
R, as they re-optimize their individual utility, making cooperation among T
less beneficial and potentially unstable.

The existence of a stable agreement among the club members is tested
by computing the utility of each subcoalition S ⊂ T , and comparing it
to the utility of the club coalition T . This comparison determines the
(non-)emptiness of the core of the subgame, which is the focus of the theo-
retical examination in the next section.

3 Theoretical results
For the theoretical analysis, I use quadratic production and damage func-
tions. This ensures that no country or coalition has a dominant strat-
egy7, while the game remains analytically solvable. We will see that the
(non-)emptiness of the core of the subgame crucially depends on the param-
eters for emission abatement costs and for damages caused by emissions,
which I call µ and π, respectively. The setup is

Pi(Ei) =
{
P 0
i − µi(E0

i − Ei)2, Ei < E0
i

P 0
i , Ei ≥ E0

i

∀i ∈ N (3.1a)

Di(EN ) = πiE
2
N ∀i ∈ N, (3.1b)

with

• baseline production for each country P 0
i (in monetary units),

• baseline emissions for each country E0
i ,

• abatement cost parameter µi (in money
emissions2 ),

• damage cost parameter πi (in money
emissions2 ),

• global emissions EN =
n∑
i=1

Ei.

For convenience, define s := |S| and t := |T |. The theoretical analysis
begins by assuming symmetry of countries inside each of the two groups (T
and R). This allows for the computation of conditions for the non-emptiness

7In games with linear damage functions, a country’s optimal level of emissions is in-
dependent of the level of emissions of the other players. Therefore, this optimal level of
emissions is a dominant strategy.
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of the core of the subgame. In a second step, I allow individual parameters
for countries inside a group and show how the core of the game changes with
the introduction of heterogeneity.

3.1 Symmetric countries

In this section, I assume symmetry of countries inside each group, meaning
that the parameters of all countries inside a group are equal:

µl = µi, πl = πi, P
0
l = P 0

i ∀i, l ∈ T, (3.2a)
µl = µj , πl = πj , P

0
l = P 0

j ∀j, l ∈ R. (3.2b)

For clarity, the index i represents a country in T , j represents a country in
R, with l being an arbitrary third country. In order to determine conditions
for the non-emptiness of the core, I first consider the symmetric allocation
and later show that no other allocation needs to be considered.

Lemma 1. Let
y ∈ Rt, yi ≡

v(T )
t

(3.3)

be the symmetric allocation of the subgame (T, v).

(i) In the setup above, the symmetric allocation lies in the core if and only
if

a(µi, µj , πi, πj , s, t, n) ≤ 0 ∀s = 1, .., t− 1, (3.4)

where

a(µi, µj , πi, πj , s, t, n)

=

 t+ s

t2 πi
µi

+ 1(n− t)2
(
πj
µj

)2

+ 2(n− t)πj
µj

(3.5)

+(2− s− t)(s2 πi
µi

+ 1) + (t− s)πi
µi

] (t− s)πi
µi

s2 πi
µi

+ 1 .

(ii) a(µi, µj , πi, πj , s, t, n) is monotonically increasing in πj

µj
.

For reasons of readability, all proofs can be found in Appendix A.

As a only depends on the fractions πi
µi

and πj

µj
, set µi = µj = 1 without

loss of generality and write a(πi, πj , s, t, n) := a(1, 1, πi, πj , s, t, n).

For a set game (i.e. n and t fixed), one can calculate the combinations
of πi and πj for which the symmetric allocation lies in the core. Let

Ps = {(πi, πj) ∈ R2
+ | a(πi, πj , s, t, n) ≤ 0}. (3.6)

8



Then

P =
t−1⋂
s=1
Ps (3.7)

is this set. We will later see that it is the set of parameter combinations
that lead to a non-empty core.

Let s, t and n be fixed. As a(πi, πj , s, t, n) is continuous for πi, πj > 0,
the boundary between Ps and R2

+\Ps can be identified. It corresponds to

a(πi, πj , s, t, n) = 0

and, as Lemma 2 (i) shows, it can be interpreted as a function π̄j(πi, s, t, n).
Some useful features of this function are shown in Lemma 2 (ii).

Lemma 2. (i) The function π̄j(πi, s, t, n) is well defined by

a(πi, π̄j(πi, s, t, n), s, t, n) = 0, πi > 0, π̄j(πi, s, t, n) > 0.

(ii) π̄j(πi, s, t, n) is monotonically increasing in πi and s.

As a(πi, πj , s, t, n) is monotonically increasing in πj , all parameter com-
binations (πi, πj) with πj > π̄j(πi, s, t, n) do not satisfy condition (3.4). For
the symmetric allocation to be in the core, this condition has to be satisfied
for all s. Together with the fact that π̄j(πi, s, t, n) is monotonically increas-
ing in s, we get the result that s = 1 is the only relevant case. In addition,
no other allocations have to be considered, as Proposition 1 shows.

Proposition 1.
P = P1 (3.8)

is the set of parameters that lead to a non-empty core of the game.

I now consider the effect of a change in the parameters πi and πj on the
stability of cooperation of the club. This is best done by first visualizing the
set P. Figure 1 shows P (blue area) for a game with 3 club members and 2
outsiders.

From the fact that a(πi, πj , s, t, n) is monotonically increasing in πj , we
get the, somewhat counterintuitive, result that a higher damage cost param-
eter of the outsiders R (and thus lower emission levels in the uncooperative
equilibrium) leads to less potential cooperation8 among the club members
T . In contrast, as π̄j(πi, s, t, n) is increasing in πi, higher damages within
the club lead to more potential cooperation. The reason lies in the leak-
age effect. Higher damages in R lead to a steeper slope of the best-reply

8By "less (more) potential cooperation", I simply mean the fact that, with increasing
parameter, the game reaches a point at which the core becomes (non-)empty.
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Figure 1: The blue area represents P for t = 3, n = 5.

function for countries in R9. This means that countries in R react more
strongly to cooperation in T (and the accompanying emission reductions)
by increasing emissions themselves. The result is less potential cooperation
in T . Increases in πi do not influence the best-reply function of countries
in R and therefore do not cause a stronger leakage effect. Consequently, a
different effect determines the result of an increase in πi: the gains of coop-
eration for members of T grow and hence lead to games with a non-empty
core. These effects are similar to the behaviour of stable coalition size in
non-cooperative models, based on the internal and external stability concept
(see e.g. Finus, 2003).

Taken together, the results imply that it is especially important to in-
volve those countries with high climate damages and/or low mitigation costs
in the club attempting to negotiate a climate agreement, as it enhances the
parameter space leading to the existence of a stable agreement. While it
is in the self-interest of countries with high climate damages to participate
in those negotiations, countries with low mitigation costs might need to be
motivated externally, for example by the prospect of transfer payments for
emission reductions.

9See proof to Lemma 1.
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3.1.1 Upper limit of πj
The shape of P in Figure 1 suggests that the boundary value might converge
to a fixed value for large πi. Indeed, there exists such an absolute upper
limit π̄ulj , independent of πi. To show the existence of π̄ulj , consider the shape
of the boundary of P and write π̄j(πi, t, n) for π̄j(πi, 1, t, n). The following
Proposition states the main results about this function and its limits.

Proposition 2. Let π̄j(πi, t, n) be defined by

a(πi, π̄j(πi, t, n), 1, t, n) = 0, πi > 0 and π̄j > 0. (3.9)

Then
(i) π̄j(πi, t, n) is well defined and

π̄j(πi, t, n) =
t

(√
t2π2

i + (t2 + 1)πi + 1− tπi
)
− 1

(t+ 1)(n− t) . (3.10)

(ii)
lim
πi→0

π̄j(πi, t, n) = t− 1
(t+ 1)(n− t) =: π̄llj (3.11)

(iii)
lim
πi→∞

π̄j(πi, t, n) = t− 1
2(n− t) =: π̄ulj (3.12)

(iv) π̄llj and π̄ulj are monotonically increasing in t (for 2 ≤ t < n) and
approach infinity as t→ n.

Proposition 2 (ii) and (iii) confirm the existence of upper and lower
limits of the boundary function. This means that if πj > π̄ulj , the core of
the game is always empty, irrespective of πi. In other words, if damages
from climate change are very high outside of the club, the club will not
cooperate. In this case the main beneficiaries from emission reductions are
not part of the club and cooperation in the club would only be met by
corresponding emission increases outside of it, as outlined in the previous
section. On the other hand, the existence of the lower limit means that
if πj < π̄llj , that is damages outside of the club are very low, cooperation
is always possible. In this case, outsiders will not change their behaviour
very much if the club cooperates, as they are not heavily affected by climate
change. Therefore, the club comprises all relevant countries and the game of
club cooperation becomes “global”, in the sense that it includes all countries
affected by climate change. As a result, the game is similar to the original
game of global cooperation by Chander and Tulkens (1997), in which the
core is non-empty for all parameters (Helm, 2001).

Proposition 2 (iv) also shows that the results are consistent with the
result of the game of global cooperation. As the number of outsiders shrinks
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and the number of club members approaches all players, the set of parameter
combinations that lead to a non-empty core expands towards the whole pa-
rameter space. This means that, in the limit of club size, a stable agreement
exists for all parameter combinations.

3.2 Asymmetric countries

In this section, I drop the assumption of symmetry of countries and allow
for individual parameters for each country. This means that the model is
characterized by the number of countries n, the number of club members t
and the parameter vector

π ∈ Rn+. (3.13)

I continue to assume µ ≡ 1. Proposition 3 shows results for global emissions
EN in the cases of no cooperation or full cooperation among club members,
when heterogeneity is present.

Proposition 3. Let

πT :=
∑
i∈T

πi, πR :=
∑
j∈R

πj .

and i ∈ T . Assume coalition S ⊂ T forms. Then

EN = E0
N

πT + πR + 1 if S = {i} (3.14)

and
EN = E0

N

tπT + πR + 1 if S = T. (3.15)

These instances represent the case of no cooperation (formation of singleton
coalitions) and the case of full cooperation among club members, respectively.

Proposition 3 shows that global emissions do not depend on the indi-
vidual values of the damage parameter. Rather, they only depend on the
parameter sum of both groups. This means that individual parameters πi
can be varied, while holding πT and πR constant, without changing global
emissions in the cooperative case. I use this property to study the impact
of heterogeneity on the value of coalitions and therefore the existence of a
stable allocation.

Due to the increased complexity of the case of asymmetric countries,
conditions for a non-empty core cannot easily be calculated. Instead, I draw
on Proposition 1 and focus on the set of singleton coalitions. Specifically, I
check whether ∑

i∈T
v({i}) > v(T ), (3.16)
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which is a sufficient condition for an emtpy core. The set of parameters for
which condition (3.16) is not satisfied is called P̃. To be clear, this means
that, while π /∈ P̃ is a sufficient condition for an empty core, π ∈ P̃ is only
a necessary condition for a non-empty core. However, Proposition 1 showed
that

P̃ = P (3.17)
in the symmetric case. Similar to Lemma 1, the elements of P̃ are deter-
mined by a quadratic function in πR:

Lemma 3. Let π ∈ Rn+. Then π ∈ P̃ if and only if

a(π) =
∑
i∈T

ai(πi, πT , πR) ≤ 0, (3.18)

where

ai(πi, πT , πR) =
[

1
π2
i + πi

− 1
π2
T + πi

]
π2
R

+
[
πT + 1
π2
i + πi

− tπT + 1
π2
T + πi

]
2πR (3.19)

+ (πT + 1)2

π2
i + πi

− (tπT + 1)2

π2
T + πi

.

By design, condition (3.18) is equivalent to condition (3.4) in the sym-
metric case. Lemma 3 shows that heterogeneity of countries in R does not
influence membership in P̃, as the condition only depends on πR, the sum of
parameters in R. The utility of club members is only influenced by the sum
of emissions of outsiders, not their distribution. As the sum of emissions of
outsiders does not depend on the distribution of parameters among outsider
countries, the cooperation decision is not influenced by this distribution.
However, it is clear that heterogeneity of countries in the club influences the
core. Proposition 4 investigates this influence.

Proposition 4. Let π ∈ Rn+, l, h ∈ T with

πl ≤
πT
t
, πh ≥

πT
t
, (3.20)

and let d > 0 with
d ≤ πl, d ≤ πT − πh. (3.21)

Define π̃ ∈ Rn+ by

π̃l = πl − d,
π̃h = πh + d, (3.22)
π̃i = πi ∀i 6= l, i 6= h.

Then a(π̃) > a(π).

13



π̃ is designed such that π̃T = πT and π̃R = πR, meaning that the trans-
formation "adds" heterogeneity without altering the sum of parameters in
each group. The repeated application of Proposition 4 can construct any
vector with these total group values. Therefore, the specific definition of π̃
represents no loss of generality about the considered parameter vector.

Proposition 4 shows that the “addition” of heterogeneity in the club
leads to an increase in a(π). The drivers behind this increase can be best
visualized with a numeric example. Building on Figure 1, Figure 2 shows
the impact of heterogeneity in the case of t = 3, n = 5. πT and πR are
kept constant, while one country’s share of πT is increased. The remaining
part of πT is divided equally between the other two club members. Focusing
on the total net value a(π), we see that in the symmetric case (share of 1

3)
we have a(π) < 0, meaning that a stable agreement exists. However, a(π)
increases with heterogeneity between the countries in T and a(π) is positive
for shares larger than 0.55, resulting in an empty core of the corresponding
game.
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Share of π
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a
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a
2
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3
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Figure 2: a(π) for varying heterogeneity between club members. πT = 1,
πR = 0.2, t = 3, n = 5.

This increase of a(π) is driven by countries two and three, those with
a decreasing share of πT . Note that a2(π) = a3(π) and a(π) =

∑3
i=1 ai(π).

As the ratio of damage cost and abatement cost of countries two and three
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reduces, the gains of cooperation become smaller and a2(π) and a3(π) rise.
The opposite is true for country one: its ratio of damage cost and abate-
ment cost increases, leading to higher gains of cooperation and lower a1(π).
However, this decrease is not big enough to offset the increases in a2(π) and
a3(π). Consequentially, a(π) increases with heterogeneity.

As the result of Proposition 4 holds for all πT and πR, the non-empty
core condition (3.18) is violated for some parameter combinations previously
in P̃ after the execution of transformation (3.22). Therefore, the set P̃
shrinks with increased heterogeneity, as visualized in Figure 3. It shows P̃
for different distributions of πT upon the countries in T . These shares of
countries are varied between subfigures only, meaning

π̂i = πi
πT
, i ∈ T (3.23)

is constant for each subfigure.
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Figure 3: P̃ for different levels of heterogeneity in T

The shrinking of P̃ with increased heterogeneity causes a different shape
of the boundary of P̃. While a high πR still leads to less cooperation in T (as
in the symmetric case), the same is true for a high πT , unlike the symmetric
case. An intuitive explanation for this phenomenon is that, for asymmetric
countries, the "absolute" differences in the parameters become more pro-
nounced with higher πT , which reinforces the effect that more heterogeneity
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causes less cooperation. As the last subfigure shows, high diversity between
countries in T can even lead to a game for which the core is empty for all
combinations of πT and πR.

The results about cooperation of asymmetric countries align with the
findings of Driessen et al. (2011), who show that, in a cooperative oligopoly
game, higher heterogeneity of marginal costs decreases the size of the core.
This is also supported by the non-cooperative model by Na and Shin (1998),
who find that coalitions are more likely to form among similar countries.
However, Finus and Pintassilgo (2013) show that, in a more general non-
cooperative game with transfers, asymmetry can lead to larger stable agree-
ments. The latter view is also backed by Smead et al. (2014), who study
a bargaining game of equilibrium selection and find a positive impact of
heterogeneity between players on the chances of reaching an agreement.

4 Application of the model to the Group of Twenty
The Group of Twenty (G20) is the most frequently mentioned forum for cli-
mate action outside of the UNFCCC in a survey of participants at UNFCCC
COPs (Hjerpe and Nasiritousi, 2015). It is also the biggest of the proposed
state clubs (Widerberg and Stenson, 2013) and climate change has been a
topic of discussion at all of its summits since 2008. Therefore, I use it for
an application of the theoretical model. The model could also be applied to
all other state clubs.

I start the analysis by estimating abatement cost and damage cost pa-
rameters, using the POLES and RICE models. Subsequently, this data is
applied to the theoretical model, beginning with the assumption of symmet-
ric countries inside a group. Finally, this assumption is dropped and the
impact of heterogeneity is evaluated.

4.1 Parameter estimation

4.1.1 Abatement cost estimation

I use scenario runs from the POLES model10 to generate marginal abate-
ment cost curves (MACCs) for different countries. The employed scenario
was produced in 2013. In the baseline, this scenario assumes that dynamic
economic growth is restored from 2015 onwards and no global climate agree-
ment is reached, resulting in soaring GHG emissions around the world. From

10Prospective Outlook on Long-term Energy Systems (POLES) is a global simulation
model for the energy sector, developed by IPTS, LEPII and Enerdata. For a detailed de-
scription of the model, see Kitous et al. (2010) or http://www.enerdata.net/enerdatauk/
solutions/energy-models/poles-model.php.
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this baseline, MACCs are produced by the successive introduction of a car-
bon price.

The POLES scenario runs up to the year 2050. As the largest impacts of
climate change are expected to happen in the very long-term, I use a simple
procedure to extend the emission paths up to 2300, following Bréchet et al.
(2011), Eyckmans and Tulkens (2003) and Nordhaus (2010). Up to 2100,
baseline emissions are extrapolated based on the linear trend of per capita
emissions for each country. Population values are taken from the scenario
of medium fertility from the UN World Population Prospects (UN, 2012).
For later years, I follow the extension procedure for Reduced Concentration
Pathway 8.5 (Meinshausen et al., 2011; IPCC, 2014). This means constant
emissions up to 2150, followed by linear reduction of global emissions to
the level that is consistent with stable atmospheric concentrations in 2250.
Emissions stay at this level for the rest of the time period.

For each carbon price, I extend the corresponding emission path based
on the linear extension of the relative reduction amount below baseline emis-
sions. The reduction stops when net-zero emissions are reached. Abatement
costs are calculated as the area under the MACC for each year and country.

Afterwards, emission reductions for each carbon price are accumulated
over the whole time period, 2013 to 2300. Abatement costs are also aggre-
gated, using a discount rate of 3%, which is the central rate used by the U.S.
Interagency Working Group on Social Cost of Carbon (2013). The result is
an abatement cost curve for each country, with each carbon price providing
one data point. I then estimate the abatement cost parameter µ as the best
fit for a quadratic function to these data points.

For the symmetric case, all G20 countries are assigned the average emis-
sion reductions and average abatement costs of G20 countries. Similarly, all
non-G20 countries are assigned the average values of non-G20 countries.

4.1.2 Damage cost estimation

I use the integrated assessment model RICE (Nordhaus, 2010) to estimate
the damage cost parameter π for each country. RICE provides cumulative
emissions and the corresponding temperature increase. It also gives damage
functions, depending on temperature increase, for 12 world regions. For each
country and cumulative emission level, I use these functions to calculate
damages, as percent of output. I then compute absolute damages using
GDP projections from the POLES model, which runs up to 2050. The GDP
projections are extended up to 2300 based on the trend of per capita values,
similar to the procedure for emissions in the abatement cost estimation.
Subsequently, they are aggregated over time, again using a 3% discount
rate. Finally, absolute damages are given by multiplying the aggregated
GDP value with the relative damage amount calculated from RICE.

After this procedure, I estimate the damage cost parameter π as the best

17



fit for a quadratic function to the data points combining cumulative emis-
sions and absolute damages. For the symmetric case, damages are uniformly
distributed among all countries in a group, analogue to the abatement cost
estimation.

4.2 Existence of a stable agreement

For the application to the model, I consider 130 countries for which there is
sufficient data available to perform the parameter estimation. However, the
EU is treated as one country and individual EU member states are therefore
removed from the list of countries. As a result, the group T includes 16
countries (15 non-EU members of the G20, plus the EU). The remaining 87
countries comprise the set R. For the full list of countries, see Table 2 for
G20 countries and Table 3 in Appendix B for non-G20 countries.

4.2.1 Symmetric case

Table 1 shows the results of the parameter estimation in the symmetric
case. The large differences in the magnitude of the parameters are a result
of the different number of countries in each group and the fact that most
big emitters are part of the G20.

µ π Ratio π
µ

G20 countries 6,419 88 1.37 E-2
non-G20 countries 113,418 4 3.25 E-5

Table 1: Abatement cost parameter µ and damage cost parameter π in the
symmetric case. Values of µ and π in EUR

1015∗(tCO2)2 .

In order to determine if the core of the G20 game is empty or not, the
estimated parameters need to be compared to the set of parameters, which
lead to a game with non-empty core, P. Figure 4 shows this set for the G20
configuration, n = 103, t = 16. The location of the estimated parameter
ratios from Table 1 is shown as a red dot.

I find that the estimated parameter ratios lie squarely in P. Specifically,
the ratio of parameters for non-G20 countries is so small that the core of the
game is non-empty, irrespective of the ratio of parameters for G20 countries
(see Proposition 2). In essence, the collective of G20 countries is large
enough, in terms of expected absolute damages from climate change and
ability to reduce emissions, that the behaviour of non-G20 countries does
not change their incentive to cooperate. Therefore, in the highly stylized
scenario of the symmetric case, a stable agreement among G20 countries
exists.

18



π
G20

 / µ
G20

π nG
20

 / 
µ nG

20

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 4: P for n = 103, t = 16 and estimated parameter ratios from Table
1.

4.2.2 Asymmetric case

Table 2 shows the results of the parameter estimation for individual G20
countries. The results for non-G20 countries can be found in Table 3 in
Appendix B.

The parameter estimation shows a high degree of heterogeneity between
G20 countries. China, the EU, India and the USA especially stand out
among the group. These countries have the four highest damage cost pa-
rameters, resulting from high GDP and, consequently, high absolute dam-
ages. They also have four of the five lowest abatement cost parameters,
resulting from high emission levels and the accompanying large abatement
opportunities. As a result, the ratio of damage cost and abatement cost in
these four countries is one or two orders of magnitude larger than the ratio
in other countries.

Consequently, the conclusion about stability of climate cooperation in
the case of asymmetric countries differs considerably from the case of sym-
metric countries. As Proposition 4 showed, “adding” heterogeneity between
countries can lead to an empty core of the game. The G20 game is such
a case. If the estimated parameters from Table 2 are used as the basis of
the game, the core of the game is empty. This result is based solely on
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Country µ π Ratio π
µ

Argentina 36,660 17 4.60E-04
Australia 18,074 17 9.14E-04
Brazil 18,842 29 1.54E-03
Canada 18,941 20 1.07E-03
China 910 483 5.31E-01
EU 8,231 164 1.99E-02
India 1,507 227 1.51E-01
Indonesia 24,546 21 8.74E-04
Japan 26,407 87 3.29E-03
Republic of Korea 55,957 32 5.71E-04
Mexico 61,550 23 3.75E-04
Russian Federation 4,966 19 3.92E-03
Saudi Arabia 53,304 9 1.77E-04
South Africa 44,856 11 2.54E-04
Turkey 20,271 30 1.46E-03
United States of America 8,131 212 2.61E-02

Table 2: Abatement cost parameter µ and damage cost parameter π for G20
countries. Values of µ and π in EUR

1015∗(tCO2)2 .

the heterogeneity of countries. If the ratio of abatement cost and dam-
age cost parameters is increased or decreased by an equal percentage for
all G20 countries, leaving the heterogeneity between countries constant, the
core stays empty. The same is true for a variation of non-G20 parameters.
Therefore, I find that heterogeneity among G20 countries makes a potential
climate agreement among the club unstable.

5 Conclusion
In order to account for the special structure of climate negotiations in pre-
existing state clubs with fixed membership, I analysed subgames of the co-
operative game by Chander and Tulkens (1997). I find that, contrary to
the model of global negotiations, a stable agreement does not exist for all
parameter combinations. Instead, existence is determined by the ratio of
damage and abatement cost parameters. The set of parameters, for which a
stable agreement exists, decreases in size as the extent of the club shrinks,
due to lower gains of cooperation in the club. Additionally, changes in the
cost parameters of both groups (club members and outsiders) lead to vastly
different effects. Parameters of non-cooperative outsiders change the result
in a counterintuitive way, as higher damage costs lead to less potential coop-
eration. Parameters of club members influence cooperation in a much more
intuitive sense, as higher damages and lower abatement costs enhance the
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prospect of a stable agreement. However, the parameters of the outsiders
play a larger role and can prevent the existence of a stable agreement, when
exceeding a certain upper limit.

The introduction of asymmetry in the cost parameters of both groups
has a neutral or negative effect on stability of cooperation in the club. While
asymmetry in the parameters of outsider countries does not influence coop-
eration inside the club, asymmetry in the parameters of the club members
hurts the chances of cooperation. This can even lead to a situation in which
the heterogeneity of countries prevents the existence of a stable agreement,
irrespective of all other parameters.

Application of the model to the G20 leads to such a situation: when
symmetric countries are assumed, the model predicts cooperation in the
group. However, when this assumption is dropped, the core of the subgame
is empty and no stable agreement exists.

Overall, the model is a lot less optimistic about the existence of a sta-
ble agreement in a climate club than in a global negotiation environment.
This was expected as the model mainly considers the impact of potential
free-riding of outsiders on an agreement among club members, making co-
operation harder. The negative effects as outlined in this paper therefore
have to be evaluated against proposed advantages of climate clubs like faster
negotiations and better participation from private actors (Biermann et al.,
2009), as well as barriers in global negotiations like the blocking power of
small countries with special circumstances. In addition, the model could be
evaluated for different function shapes and other groups of countries. The
model could also be extended in a number of ways. It does not include inter-
national macroeconomic effects of emission reduction measures in a country
or multiple countries. Also, the model does not include uncertainty about
the values of future abatement costs or future damages. These issues are
left for further research.
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A Proofs
A.1 Proof of Lemma 1
Proof. (i) Calculate the value function of the game. Emissions are given by the
first order conditions. Let S ⊆ T and i ∈ S.

max
Ei

∑
l∈S

[Pl(El)−Dl(EN )]

⇒ ∂Pi(Ei)
∂Ei

−
∑
l∈S

∂Dl(EN )
∂Ei

= 0

⇒ 2µi(E0
i − Ei) = 2

∑
l∈S

πl︸ ︷︷ ︸
=:πS

EN

⇒ 2µi(E0
i − Ei) = 2sπiEN

⇒ Ei = µiE
0
i − sπiEN
µi

= E0
i −

sπi
µi
EN

For i ∈ T , i /∈ S one gets

max
Ei

Pi(Ei)−Di(EN )

⇒ ∂Pi(Ei)
∂Ei

+ ∂Di(EN )
∂Ei

= 0

⇒ 2µi(E0
i − Ei) = 2πiEN

⇒ Ei = µiE
0
i − πiEN
µi

= E0
i −

πi
µi
EN .

And for j ∈ R, the resulting emissions are

max
Ej

Pj(Ej)−Dj(EN )

⇒ ∂Pj(Ej)
∂Ej

+ ∂Dj(EN )
∂Ej

= 0

⇒ 2µj(E0
j − Ej) = 2πjEN

⇒ Ej =
µjE

0
j − πjEN
µj

= E0
j −

πj
µj
EN .

For convenience, define λl = 1
µl

and λS =
∑
l∈S λl. Then sum over all players’

emissions.

⇒
n∑
k=1

Ek︸ ︷︷ ︸
=EN

= tE0
i + (n− t)E0

j − (s2λiπi + (t− s)λiπi + (n− t)λjπj)EN

⇒ EN =
tE0

i + (n− t)E0
j

s2λiπi + (t− s)λiπi + (n− t)λjπj + 1 .
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With this, the value function can be calculated:

v(S) =s
[
P 0
i −

1
λi

(
E0
i − (E0

i − sλiπiEN )
)2 − πiE2

N

]

=s

P 0
i −

1
λi

(
sλiπi(tE0

i + (n− t)E0
j )

s2λiπi + (t− s)λiπi + (n− t)λjπj + 1

)2

−πi

(
tE0

i + (n− t)E0
j

s2λiπi + (t− s)λiπi + (n− t)λjπj + 1

)2


=s
[
P 0
i − πi

(s2λiπi + 1)(tE0
i + (n− t)E0

j )2

(s2λiπi + (t− s)λiπi + (n− t)λjπj + 1)2

]

and

v(T ) =t

P 0
i −

1
λi

(
tλiπi(tE0

i + (n− t)E0
j )

t2λiπi + (n− t)λjπj + 1

)2

−πi

(
tE0

i + (n− t)E0
j

t2λiπi + (n− t)λjπj + 1

)2


=t
[
P 0
i − πi

(t2λiπi + 1)(tE0
i + (n− t)E0

j )2

(t2λiπi + (n− t)λjπj + 1)2

]
.

The excess of the symmetric allocation is defined as

e(S, y, v) = v(S)− y(S) = v(S)− s

t
v(T ).

Clearly, y lies in the core of (T, v) if and only if

e(S, y, v) ≤ 0 ∀S ( T.

In our case, this is equivalent to

v(S) ≤ s

t
v(T )

⇔ − s2λiπi + 1
(s2λiπi + (t− s)λiπi + (n− t)λjπj + 1)2 ≤ −

t2λiπi + 1
(t2λiπi + (n− t)λjπj + 1)2

⇔ s2λiπi + 1
(s2λiπi + (t− s)λiπi + (n− t)λjπj + 1)2 ≥

t2λiπi + 1
(t2λiπi + (n− t)λjπj + 1)2

⇔ (s2λiπi + (t− s)λiπi + (n− t)λjπj + 1)2

s2λiπi + 1 ≤ (t2λiπi + (n− t)λjπj + 1)2

t2λiπi + 1
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⇔ ((n− t)λjπj)2 + 2(n− t)λjπj(s2λiπi + (t− s)λiπi + 1) + (s2λiπi + (t− s)λiπi + 1)2

s2λiπi + 1

≤ ((n− t)λjπj)2 + 2(n− t)λjπj(t2λiπi + 1) + (t2λiπi + 1)2

t2λiπi + 1

⇔
(

1
s2λiπi + 1 −

1
t2λiπi + 1

)
︸ ︷︷ ︸

>0

(n− t)2(λjπj)2

+

s2λiπi + (t− s)λiπi + 1
s2λiπi + 1︸ ︷︷ ︸

>1

− t2λiπi + 1
t2λiπi + 1︸ ︷︷ ︸

=1

 2(n− t)λjπj

+ (s2λiπi + (t− s)λiπi + 1)2

s2λiπi + 1 − (t2λiπi + 1)

≤ 0

Define the left hand side of the last inequality as a(λi, λj , πi, πj , s, t, n). Due to the
rearranging of the formula, it is the excess multiplied with a positive number.

The coefficients of the polynomial can be further simplified. One has

1
s2λiπi + 1 −

1
t2λiπi + 1 = t2λiπi + 1− (s2λiπi + 1)

(s2λiπi + 1)(t2λiπi + 1)

= (t2 − s2)λiπi
(s2λiπi + 1)(t2λiπi + 1) = (t+ s)(t− s)λiπi

(s2λiπi + 1)(t2λiπi + 1)

=(t− s)λiπi
s2λiπi + 1

t+ s

t2λiπi + 1 ,

s2λiπi + (t− s)λiπi + 1
s2λiπi + 1 − 1 = s2λiπi + (t− s)λiπi + 1− s2λiπi − 1

s2λiπi + 1

=(t− s)λiπi
s2λiπi + 1

and

(s2λiπi + (t− s)λiπi + 1)2

s2λiπi + 1 − (t2λiπi + 1)

=(t− s)λiπi
s2λiπi + 1

[
(2− s− t)(s2λiπi + 1) + (t− s)λiπi

]
.

This leads to

a(λi, λj , πi, πj , s, t, n)

=
[

t+ s

t2λiπi + 1(n− t)2 (λjπj)2 + 2(n− t)λjπj

+(2− s− t)(s2λiπi + 1) + (t− s)λiπi
] (t− s)λiπi
s2λiπi + 1 .
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(ii) a(λi, λj , πi, πj , s, t, n) is a quadratic polynomial of (λjπj). The coefficients,
disregarding the constant term, are positive. Therefore, a(λi, λj , πi, πj , s, t, n) is
monotonically increasing in (λjπj).

A.2 Proof of Lemma 2
Proof. (i) Using the implicit function theorem, π̄j(πi, s, t, n) is well defined if

∂a(πi, πj , s, t, n)
∂πj

6= 0 ∀πi > 0, πj > 0.

Continuing from Lemma 1, one gets

∂a

∂πj
= (t− s)πi
s2πi + 1︸ ︷︷ ︸

>0

2 t+ s

t2πi + 1(n− t)2πj︸ ︷︷ ︸
>0

+ 2(n− t)︸ ︷︷ ︸
>0

 > 0.

(ii) In order to get an analytical solution for π̄j(πi, s, t, n), solve

a(πi, π̄j , s, t, n) = 0

for π̄j > 0.

a(πi, π̄j , s, t, n) = 0

⇔ t+ s

t2πi + 1(n− t)2π̄2
j + 2(n− t)π̄j + (2− s− t)(s2πi + 1) + (t− s)πi = 0

⇔ π̄2
j + 2 t2πi + 1

(t+ s)(n− t) π̄j + ((2− s− t)(s2πi + 1) + (t− s)πi)(t2πi + 1)
(t+ s)(n− t)2 = 0

⇔ π̄2
j + 2 t2πi + 1

(t+ s)(n− t) π̄j + ((t+ s)(2− s− t)(s2πi + 1) + (t2 − s2)πi)(t2πi + 1)
(t+ s)2(n− t)2 = 0

⇔ π̄j =− t2πi + 1
(t+ s)(n− t)

±

√
(t2πi + 1)2

(t+ s)2(n− t)2 −
((t+ s)(2− s− t)(s2πi + 1) + (t2 − s2)πi)(t2πi + 1)

(t+ s)2(n− t)2

=
−(t2πi + 1)±

√
(t2πi + 1)(t2πi + 1− ((t+ s)(2− s− t)(s2πi + 1) + (t2 − s2)πi))

(t+ s)(n− t)

As π̄j > 0, the term with positive root defines the boundary. With

t2πi + 1− ((t+ s)(2− s− t)(s2πi + 1) + (t2 − s2)πi)
=1− (t+ s)(2− s− t)(s2πi + 1) + s2πi

=1− (t+ s− 1)(2− s− t)(s2πi + 1)− (2− s− t)(s2πi + 1) + s2πi

=(t+ s− 1)2(s2πi + 1),
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one gets

π̄j(πi, s, t, n) =
−(t2πi + 1) +

√
(t2πi + 1)(t+ s− 1)2(s2πi + 1)
(t+ s)(n− t)

=
−(t2πi + 1) + (t+ s− 1)

√
(t2πi + 1)(s2πi + 1)

(t+ s)(n− t) .

One can now show that π̄j(πi, s, t, n) is monotonically increasing in πi:

∂π̄j(πi, s, t, n)
∂πi

= 1
(t+ s)(n− t)

[
−t2 + (t+ s− 1) 2s2t2πi + s2 + t2

2
√

(t2πi + 1)(s2πi + 1)

]

= 1
(t+ s)(n− t)

[
−t2 + 1

2(t+ s− 1)
(

(2s2t2πi + s2 + t2)(2s2t2πi + s2 + t2)
(t2πi + 1)(s2πi + 1)

) 1
2
]

= 1
(t+ s)(n− t)

[
−t2 + 1

2(t+ s− 1)
(

4s4t4π2
i + 4s2t2πi(s2 + t2) + (s2 + t2)2

s2t2π2
i + (s2 + t2)πi + 1

) 1
2
]

≥ 1
(t+ s)(n− t)

[
−t2 + 1

2(t+ s− 1)
(

(4t2)(s4t2π2
i + s2πi(s2 + t2) + 1)

s2t2π2
i + (s2 + t2)πi + 1

) 1
2
]

≥ 1
(t+ s)(n− t)

[
−t2 + 1

2(t+ s− 1)
(
4t2
) 1

2

]
= 1

(t+ s)(n− t)
[
−t2 + (t+ s− 1)t

]
≥0,

where the first inequality holds as (s2 + t2)2 ≥ 4t2 for t ≥ 2, s ≥ 1. Finally,
π̄j(πi, s, t, n) is monotonically increasing in s:

∂π̄j(πi, s, t, n)
∂s

=
[(√

(t2πi + 1)(s2πi + 1) + (t+ s− 1) 1
2
√

(t2πi + 1)(s2πi + 1)
2sπi(t2πi + 1)

)
∗ (t+ s)(n− t)

−
(

(t+ s− 1)
√

(t2πi + 1)(s2πi + 1)− (t2πi + 1)
)

(n− t)
]/

((t+ s)2(n− t)2)

=
[

(t+ s)
√

(t2πi + 1)(s2πi + 1) + (t+ s)(t+ s− 1)sπi(t2πi + 1)√
(t2πi + 1)(s2πi + 1)

−(t+ s− 1)
√

(t2πi + 1)(s2πi + 1) + (t2πi + 1)
]/

((t+ s)2(n− t))

=
[√

(t2πi + 1)(s2πi + 1) + (t+ s)(t+ s− 1)sπi(t2πi + 1)√
(t2πi + 1)(s2πi + 1)

+ (t2πi + 1)
]/

((t+ s)2(n− t))

≥0.
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A.3 Proof of Proposition 1
Proof.

P = P1

follows directly from Lemma 1 and the fact that a is increasing in πj . It remains
to be shown that no other allocation has to be considered.

For this, assume that the symmetric allocation does not belong to the core of
the game, so (πi, πj) /∈ P = P1. Let i ∈ T . Then

0 < a(πi, πj , 1, t, n)

= v({i})− v(T )
t

⇔v({i}) > v(T )
t

⇒
∑
i∈T

v({i}) > v(T ).

Therefore, no allocation can satisfy all singletons simultaneously. The core is empty.

A.4 Proof of Proposition 2
Proof. (i) From the proof of Lemma 2, one has

π̄j(πi, s, t, n) =
−(t2πi + 1) + (t+ s− 1)

√
(t2πi + 1)(s2πi + 1)

(t+ s)(n− t) .

In the case of s = 1, this simplifies to

π̄j(πi, 1, t, n)

=
−(t2πi + 1) + t

√
(t2πi + 1)(πi + 1)

(t+ 1)(n− t)

=
t
(√

(t2πi + 1)(πi + 1)− tπi
)
− 1

(t+ 1)(n− t)

=
t
(√

t2π2
i + (t2 + 1)πi + 1− tπi

)
− 1

(t+ 1)(n− t) .

(ii) Follows directly from (i).
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(iii) In order to calculate the upper limit, first simplify the inner term√
t2π2

i + (t2 + 1)πi + 1− tπi

=
(√

t2π2
i + (t2 + 1)πi + 1− tπi

) √
t2π2

i + (t2 + 1)πi + 1 + tπi√
t2π2

i + (t2 + 1)πi + 1 + tπi

=
(
t2π2

i + (t2 + 1)πi + 1− t2π2
i

) 1√
t2π2

i + (t2 + 1)πi + 1 + tπi

= (t2 + 1)πi + 1√
t2π2

i + (t2 + 1)πi + 1 + tπi

=
(t2 + 1) + 1

πi√
t2π2

i + (t2 + 1) 1
πi

+ 1
π2

i
+ t

πi→∞→ t2 + 1√
t2 + t

= t2 + 1
2t .

This leads to

lim
πi→∞

π̄j(πi, t, n) =
t t

2+1
2t − 1

(t+ 1)(n− t) =
t2+1

2 − 1
(t+ 1)(n− t)

= t2 + 1− 2
2(t+ 1)(n− t) = (t2 − 1)(t− 1)

2(t2 − 1)(n− t)

= t− 1
2(n− t)

=: π̄ulj .

(iv) π̄ulj is obviously monotonically increasing in t. This is also true for π̄llj , as

∂π̄llj
∂t

= (−t2 + (n− 1)t+ n)− (t− 1)(−2t+ (n− 1))
(−t2 + (n− 1)t+ n)2

= −t
2 + (n− 1)t+ n+ 2t2 − (n− 1)t− 2t+ (n− 1)

(−t2 + (n− 1)t+ n)2

= t2 − 2t+ 2n− 1
(−t2 + (n− 1)t+ n)2

> 0 ∀t ≥ 2, n ≥ 2.

A.5 Proof of Proposition 3
Proof. Let S ⊂ T, λ ≡ 1. Similar to the proof of Lemma 1, one gets

Ei = E0
i − πSEN ∀i ∈ S

Ei = E0
i − πiEN ∀i ∈ T, i /∈ S

Ej = E0
j − πjEN ∀j ∈ R
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and
EN = E0

N

sπS + πT\S + πR + 1 .

In the cases of S = {i} and S = T , the proposition follows directly.

A.6 Proof of Lemma 3
Proof. Following Proposition 3, calculate the individual utility of i ∈ S:

vi(S) =Pi(Ei)−Di(EN )

=P 0
i −

(
E0
i −

(
E0
i − πS

E0
N

sπS + πT\S + πR + 1

))2

− πi
(

E0
N

sπS + πT\S + πR + 1

)2

=P 0
i − (π2

S + πi)
(

E0
N

sπS + πT\S + πR + 1

)2

Therefore one gets

vi({i}) = P 0
i − (π2

i + πi)
(

E0
N

πi + πT\i + πR + 1

)2

= P 0
i − (π2

i + πi)
(

E0
N

πT + πR + 1

)2

,

vi(T ) = P 0
i − (π2

T + πi)
(

E0
N

tπT + πR + 1

)2

and

vi({i}) > vi(T )

⇔ π2
T + πi

(tπT + πR + 1)2 >
π2
i + πi

(πT + πR + 1)2

⇔ (πT + πR + 1)2

π2
i + πi

>
(tπT + πR + 1)2

π2
T + πi

⇔π2
T + π2

R + 1 + 2πTπR + 2πT + 2πR
π2
i + πi

>
t2π2

T + π2
R + 1 + 2tπTπR + 2tπT + 2πR

π2
T + πi
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⇔
[

1
π2
i + πi

− 1
π2
T + πi

]
π2
R

+
[
πT + 1
π2
i + πi

− tπT + 1
π2
T + πi

]
2πR

+ π2
T + 1 + 2πT
π2
i + πi

− t2π2
T + 1 + 2tπT
π2
T + πi

> 0

⇔
[

1
π2
i + πi

− 1
π2
T + πi

]
π2
R

+
[
πT + 1
π2
i + πi

− tπT + 1
π2
T + πi

]
2πR

+ (πT + 1)2

π2
i + πi

− (tπT + 1)2

π2
T + πi

> 0

Defining the left-hand-side of the equation as ai(πi, πT , πR) leads to the desired
result.

A.7 Proof of Proposition 4
Proof. Define

F (x) = A

x2 + x
− B

C + x
,

where A,B and C only depend on πT , but not on πi. Let

F total(π) =
∑
i∈T

F (πi).

I show that F total(π̃) > F total(π) for all three terms of a(π), as derived in Lemma
3:

A = 1, B = 1, C = π2
T ;

A = πT + 1, B = tπT + 1, C = π2
T ;

A = (πT + 1)2, B = (tπT + 1)2, C = π2
T .

One has
∂F

∂x
= − A(2x+ 1)

x2(x+ 1)2 + B

(C + x)2 .

I now show that
∂F

∂x
(πl) <

∂F

∂x
(πh) ∀πl <

πT
t
, πh >

πT
t
.
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Then, with d > 0 approaching zero, one has

F (π̃l)− F (πk) = −d
(
∂F

∂x
(πl)

)
F (π̃h)− F (πh) = d

(
∂F

∂x
(πh)

)
⇒ F total(π̃)− F total(π) = d

(
−∂F
∂x

(πl) + ∂F

∂x
(πh)

)
≥ 0.

Let πm = πT

t . I first show that

∂F

∂x
(πl) <

∂F

∂π
(πm).

∂2F

∂2x
(πl) = 2A(C + πl)3((2πl + 1)(2π2

l + 3πl + 1)− πl(πl + 1)2)− 2Bπ3
l (πl + 1)4

π3
l (πl + 1)4(C + πl)3 .

The numerator can be rearranged. Using πT ≥ tπl.

2A(C + πl)3((2πl + 1)(2π2
l + 3πl + 1)− πl(πl + 1)2)− 2Bπ3

l (πl + 1)4

=2A(π6
T + 3πlπ4

T + 3π2
l π

2
T + π3

l )(3π3
l + 6π2

l + 4πl + 1)− 2B(π7
l + 4π6

l + 6π5
l + 4π4

l + π3
l )

≥2A(t6π6
l + 3t4π5

l + 3t2π4
l + π3

l )(3π3
l + 6π2

l + 4πl + 1)− 2B(π7
l + 4π6

l + 6π5
l + 4π4

l + π3
l )

= 2[π9
l (t2A(3t4)) + π8

l (t2A(pt2 + 6t4)) + π7
l (t2A(4t4 + 18t2 + 12)−B)

π6
l (t2A(t4 + 12t2 + 18 + 3

t2
)− 4B) + π5

l (t2A(3t2 + 12 + 6
t2

)− 6B)

π4
l (A(3t2 + 4)− 4B) + π3

l (A−B)]

In the case A = (πT + 1)2, B = (tπT + 1)2, this equals

2[π9
l (t2A(3t4)) + π8

l (t2A(pt2 + 6t4)) + π7
l (t2A(4t4 + 18t2 + 12)−B)

+ π6
l (t2A(t4 + 12t2 + 18 + 3

t2
)− 4B) + π5

l (t2A(3t2 + 12 + 6
t2

)− 6B)

+ π4
l ((π2

T + 2πT + 1)(3t2 + 4)− 4(t2π2
T + 2tπT + 1)) + π3

l (π2
T + 2πT + 1− (t2π2

T + 2tπT + 1))]
= 2[π9

l (t2A(3t4)) + π8
l (t2A(pt2 + 6t4)) + π7

l (t2A(4t4 + 18t2 + 12)−B)

+ π6
l (t2A(t4 + 12t2 + 18 + 3

t2
)− 4B + (3t2 + 4)− 4t2)

+ π5
l (t2A(3t2 + 12 + 6

t2
)− 6B + 2(3t2 + 4)− 8t+ 1− t2)

+ π4
l (3t2 + 4− 4 + 2− 2t) + π3

l (1− 1)]
≥0

as t2A ≥ B,A ≥ 1, B ≥ 1, t ≥ 2. The calculations for the other two cases are
analogue. This shows that

∂F

∂x
(πl) <

∂F

∂x
(πm).

In the second step, I show that

∂F

∂x
(πm + ε) > ∂F

∂x
(πm) ∀0 < ε < πT − πm.
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∂F

∂x
(πm + ε)− ∂F

∂x
(πm)

=− A(2(πm + ε) + 1)
(πm + ε)2(πm + ε+ 1)2 + B

(C + πm + ε)2 + A(2πm + 1)
π2
m(πm + 1)2 −

B

(C + πm)2

=
{
A(C + πm)2(C + πm + ε)2[(2πm + 1)(πm + ε)2(πm + ε+ 1)2 − (2(πm + ε) + 1)π2

m(πm + 1)2]
+Bπ2

m(πm + 1)2(πm + ε)2(πm + ε+ 1)2[(C + πm)2 − (C + πm + ε)2]
}

/
{

(πm + ε)2(πm + ε+ 1)2(C + πm + ε)2π2
m(πm + 1)2(C + πm)2}

The numerator simplifies to

A(C + πm)2(C + πm + ε)2

[6επ4
m + (12ε2 + 12ε)π3

m + (8ε3 + 18ε2 + 8ε)π2
m + (2ε4 + 8ε3 + 8ε2 + 2ε)πm + ε2(ε+ 1)2]

−Bπ2
m(πm + 1)2(πm + ε)2(πm + ε+ 1)2(2ε(C + πm) + ε2)

Using C = π2
T , πm = πT

t , this equals

A

[
π8
T + 4

t
π7
T + 2εt2 + 5

t2
π6
T + 6εt2 + 4

t3
π5
T + ε2t4 + 6εt2 + 1

t4
π4
T + 2ε2t2 + 2ε

t3
π3
T + ε2

t2
π2
T

]
(

6ε
t4
π4
T + 12ε2 + 12ε

t3
π3
T + 8ε3 + 18ε2 + 8ε

t2
π2
T + 2ε4 + 8ε3 + 8ε2 + 2ε

t
πT + ε2(ε+ 1)2

)
−B

[
1
t8
π8
T + 4ε+ 4

t7
π7
T + 6ε2 + 14ε+ 6

t6
π6
T + 4ε3 + 18ε2 + 18ε+ 4

t5
π5
T

ε4 + 10ε3 + 19ε2 + 10ε+ 1
t4

π4
T + 2ε4 + 8ε3 + 8ε2 + 2ε

t3
π3
T + ε2(ε+ 1)2

t2
π2
T

]
(

2επ2
T + 2ε

t
πT + ε2

)
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=A
[

6ε
t4
π12
T +

(
24ε
t5

+ 12ε2 + 12ε
t3

)
π11
T +

(
30ε
t6

+ 60ε2 + 48ε
t4

+ 8ε3 + 18ε2 + 8ε
t2

)
π10
T

+
(

24ε
t7

+ 96ε2 + 60ε
t5

+ 56ε3 + 96ε2 + 32ε
t3

+ 2ε4 + 8ε3 + 8ε2 + 2ε
t

)
π9
T

+
(

6ε
t8

+ 84ε2 + 48ε
t6

+ 118ε3 + 162ε2 + 40ε
t4

+ 24ε4 + 68ε3 + 48ε2 + 8ε
t2

+ (ε4 + 2ε3 + ε2)
)
π8
T

+
(

24ε2 + 12ε
t7

+ 116ε3 + 144ε2 + 32ε
t5

+ 70ε4 + 160ε3 + 88ε2 + 10ε
t3

+ 4ε5 + 20ε4 + 24ε3 + 8ε2

t

)
π7
T

+
(

38ε3 + 42ε2 + 8ε
t6

+ 80ε4 + 164ε3 + 80ε2 + 8ε
t4

+ 20ε5 + 71ε4 + 66ε3 + 17ε2

t2
+ (2ε5 + 4ε4 + 2ε3)

)
π6
T

+
(

30ε4 + 56ε3 + 24ε2 + 2ε
t5

+ 28ε5 + 78ε4 + 72ε3 + 16ε2

t3
+ 2ε6 + 14ε5 + 20ε4 + 8ε3)

t

)
π5
T

+
(

12ε5 + 35ε4 + 26ε3 + 5ε2

t4
+ 4ε6 + 22ε5 + 28ε4 + 10ε3

t2
+ (ε6 + 2ε5 + ε4)

)
π4
T

+
(

2ε6 + 10ε5 + 12ε4 + 4ε3

t3
+ 2ε6 + 4ε5 + 2ε4

t

)
π3
T

+ ε6 + 2ε5 + ε4

t2
π2
T

]
−B

[
2ε
t8
π10
T +

(
2ε
t9

+ 8ε2 + 8ε
t7

)
π9
T +

(
9ε2 + 8ε

t8
+ 12ε3 + 28ε2 + 12ε

t6

)
π8
T

+
(

16ε3 + 32ε2 + 12ε
t7

+ 8ε4 + 36ε3 + 36ε2 + 8ε
t5

)
π7
T

+
(

14ε4 + 50ε3 + 42ε2 + 8ε
t6

+ 2ε5 + 20ε4 + 38ε3 + 20ε2 + 2ε
t4

)
π6
T

+
(

6ε5 + 38ε4 + 56ε3 + 24ε2 + 2ε
t5

+ 4ε5 + 16ε4 + 16ε3 + 4ε2

t3

)
π5
T

+
(
ε6 + 14ε5 + 35ε4 + 26ε3 + 5ε2

t4
+ 2ε5 + 4ε4 + 2ε3

t2

)
π4
T

+2ε6 + 10ε5 + 12ε4 + 4ε3

t3
π3
T + ε6 + 2ε5 + ε4

t2
π2
T

]
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For A = (πT + 1)2, B = (tπT + 1)2, this equals[
6ε
t4
π14
T +

(
24ε
t5

+ 12ε
t4

+ 12ε2 + 12ε
t3

)
π13
T

+
(

28ε
t6

+ 48ε
t5

+ 60ε2 + 54ε
t4

+ 24ε2 + 24ε
t3

+ 8ε3 + 18ε2 + 8ε
t2

)
π12
T

+
(

18ε
t7

+ 60ε
t6

+ 88ε2 + 76ε
t5

+ 120ε2 + 96ε
t4

+ 56ε3 + 108ε2 + 44ε
t3

+ 16ε3 + 36ε2 + 16ε
t2

+2ε4 + 8ε3 + 8ε2 + 2ε
t

)
π11
T

+
(

48ε
t7

+ 59ε2 + 54ε
t6

+ 192ε2 + 120ε
t5

+ 106ε3 + 194ε2 + 76ε
t4

+ 112ε3 + 192ε2 + 64ε
t3

+24ε4 + 76ε3 + 66ε2 + 16ε
t2

+ 4ε4 + 16ε3 + 16ε2 + 4ε
t

+ (ε4 + 2ε3 + ε2)
)
π10
T

+
(
−2ε
t9

+ 12ε
t8

+ −2ε2 + 12ε
t7

+ 168ε2 + 96ε
t6

+ 76ε3 + 152ε2 + 56ε
t5

+ 236ε3 + 324ε2 + 80ε
t4

+62ε4 + 180ε3 + 148ε2 + 34ε
t3

+ 48ε4 + 136ε3 + 96ε2 + 16ε
t2

+ 4ε5 + 22ε4 + 32ε3 + 16ε2 + 2ε
t

+(2ε4 + 4ε3 + 2ε2)
)
π9
T

+
(
−9ε2 − 2ε

t8
+ 48ε2 + 24ε

t7
+ 6ε3 + 34ε2 + 20ε

t6
+ 232ε3 + 288ε2 + 64ε

t5
+ 50ε4 + 106ε3 + 128ε2 + 24ε

t4

+140ε4 + 320ε3 + 176ε2 + 20ε
t3

+ 18ε5 + 75ε4 + 96ε3 + 45ε2 + 6ε
t2

+ 8ε5 + 40ε4 + 48ε3 + 16ε2

t

+(2ε5 + 5ε4 + 6ε3 + ε2)
)
π8
T

+
(
−16ε3 − 8ε2

t7
+ 76ε3 + 84ε2 + 16ε

t6
+ −6ε4 + 36ε3 + 48ε2 + 10ε

t5
+ 160ε4 + 328ε3 + 160ε2 + 16ε

t4

+24ε5 + 108ε4 + 156ε3 + 66ε2 + 6ε
t3

+ 40ε5 + 142ε4 + 132ε3 + 34ε2

t2

+2ε6 + 14ε5 + 24ε4 + 16ε3 + 4ε2

t
+ (4ε5 + 8ε4 + 4ε3)

)
π7
T

+
(
−14ε4 − 12ε3

t6
+ 60ε4 + 112ε3 + 48ε2 + 4ε

t5
+ −2ε5 + 19ε4 + 40ε3 + 17ε2 + 2ε

t4

+56ε5 + 156ε4 + 144ε3 + 32ε2

t3
+ 3ε6 + 20ε5 + 32ε4 + 18ε3 + 4ε2

t2
+ 4ε6 + 28ε5 + 40ε4 + 16ε3

t

+(ε6 + 2ε5 + 1ε4)
)
π6
T

+
(
−6ε5 − 8ε4

t5
+ 24ε5 + 70ε4 + 52ε3 + 10ε2

t4
+ 6ε5 + 4ε4 + 8ε3 + 2ε2

t3

+8ε6 + 44ε5 + 56ε4 + 20ε3

t2
+ 2ε6 + 4ε5 + 2ε4

t
+ (2ε6 + 4ε5 + 2ε4)

)
π5
T

+
(
−ε6 − 2ε5

t4
+ 4ε6 + 20ε5 + 24ε4 + 8ε3

t3
+ ε6 + 2ε5 + ε4

t2
+ 4ε6 + 8ε5 + 4ε4

t

)
π4
T

+ 2ε6 + 4ε5 + 2ε4

t2
π3
T

]
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Using t ≥ 2, this is larger than zero. The other cases of A and B are analogue.
Therefore

∂F

∂x
(πm + ε) > ∂F

∂x
(πm) ∀0 < ε < πT − πm.

and
∂F

∂x
(πl) <

∂F

∂x
(πh) ∀πl <

πT
t
, πh >

πT
t
.

B Parameter estimation

Table 3: Abatement cost parameter µ and damage cost pa-
rameter π for non-G20 countries. Values of µ and π in

EUR
1015∗(tCO2)2 .

Country µ π Ratio π
µ

Albania 2,608,628 0.2 9.27E-08
Algeria 103,511 4.2 4.07E-05
Angola 35,907 3.2 8.87E-05
Armenia 1,508,351 0.4 2.76E-07
Azerbaijan 230,907 2.3 1.02E-05
Bahrain 1,158,149 0.5 4.11E-07
Bangladesh 62,093 9.7 1.56E-04
Belarus 86,908 2.8 3.17E-05
Benin 138,527 0.8 5.85E-06
Bolivia 465,053 0.5 1.05E-06
Bosnia and Herzegovina 400,052 0.3 7.98E-07
Botswana 172,703 1.8 1.02E-05
Brunei Darussalam 676,847 0.6 9.60E-07
Cambodia 1,453,484 0.8 5.40E-07
Cameroon 104,469 3.2 3.09E-05
Chile 91,656 4.4 4.80E-05
Colombia 106,432 5.7 5.35E-05
Congo 199,502 1.5 7.34E-06
Costa Rica 1,242,956 0.9 7.29E-07
Côte d’Ivoire 77,117 3.0 3.94E-05
Croatia 1,081,274 0.7 6.28E-07
Cuba 362,417 1.7 4.72E-06
Democratic Republic of Congo 170,578 1.8 1.08E-05
Dominican Republic 383,818 1.5 3.90E-06
Ecuador 232,848 1.0 4.12E-06
Egypt 19,413 34.8 1.79E-03
El Salvador 1,289,130 0.6 4.64E-07
Eritrea 1,264,804 0.2 1.49E-07
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Ethiopia 127,307 4.3 3.37E-05
Gabon 282,095 1.5 5.44E-06
Georgia 833,195 0.6 7.40E-07
Ghana 65,173 2.0 3.08E-05
Guatemala 834,609 1.1 1.33E-06
Haiti 3,349,752 0.1 4.22E-08
Honduras 1,028,626 0.4 4.06E-07
Iceland 5,552,626 0.1 2.61E-08
Iran (Islamic Republic of) 37,714 19.3 5.12E-04
Iraq 1,104,628 0.9 7.77E-07
Israel 88,136 9.8 1.11E-04
Jordan 373,428 0.9 2.33E-06
Kazakhstan 20,967 4.7 2.25E-04
Kenya 47,756 4.7 9.89E-05
Kuwait 579,374 2.2 3.87E-06
Kyrgyzstan 810,864 0.3 3.11E-07
Lebanon 472,666 1.5 3.07E-06
Libyan Arab Jamahiriya 334,042 5.6 1.67E-05
Macedonia (the former Yugoslavian Republic of) 1,059,975 0.2 1.70E-07
Malaysia 30,840 13.8 4.48E-04
Moldova (Republic of) 841,704 0.2 2.68E-07
Mongolia 405,080 0.2 4.99E-07
Morocco 93,014 7.0 7.47E-05
Mozambique 174,220 2.4 1.36E-05
Namibia 259,284 1.3 5.17E-06
Nepal 807,129 1.0 1.21E-06
New Zealand 227,561 1.8 8.04E-06
Nicaragua 1,733,032 0.3 1.53E-07
Nigeria 8,237 23.9 2.90E-03
Norway 213,383 2.7 1.26E-05
Oman 501,023 1.1 2.17E-06
Pakistan 24,932 13.9 5.57E-04
Panama 730,838 0.8 1.14E-06
Paraguay 1,448,104 0.4 2.84E-07
Peru 174,473 3.5 2.02E-05
Philippines 72,481 12.7 1.75E-04
Qatar 495,301 1.8 3.55E-06
Senegal 91,816 1.8 1.97E-05
Singapore 101,527 10.8 1.07E-04
Sri Lanka 197,722 3.0 1.53E-05
Sudan 41,546 5.8 1.40E-04
Switzerland 347,140 4.1 1.18E-05
Syrian Arab Republic 156,143 1.7 1.10E-05
Tajikistan 1,839,606 0.3 1.38E-07
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Tanzania (United Republic of) 72,448 5.6 7.71E-05
Thailand 31,263 16.0 5.12E-04
Togo 428,717 0.4 9.59E-07
Trinidad and Tobago 203,235 0.5 2.45E-06
Tunisia 242,017 3.6 1.50E-05
Turkmenistan 106,978 0.7 6.57E-06
Ukraine 18,849 3.6 1.89E-04
United Arab Emirates 256,310 5.1 2.00E-05
Uruguay 872,032 1.2 1.34E-06
Uzbekistan 61,045 3.0 4.94E-05
Venezuela (Bolivarian Republic of) 45,989 6.1 1.33E-04
Vietnam 51,433 5.5 1.08E-04
Yemen 2,041,362 0.6 2.78E-07
Zambia 158,429 1.8 1.13E-05
Zimbabwe 80,097 0.9 1.11E-05
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