Investigation on porous transport layers for PEM electrolysers

Arne Fallisch, Jagdish Ghinaiya, Kolja Bromberger, Maximillian Kiermaier, Thomas Lickert, Tom Smolinka

Fraunhofer Institute for Solar Energy Systems ISE

6th European PEFC and Electrolyser Forum

Lucerne, 06. July 2017

www.ise.fraunhofer.de

Content

- Motivation
- Methodology and experimental setup
- Development of new characterisation methods
 - Capillary pressure vs saturation relation in porous media
 - Intrinsic contact angle in porous media
- Comparison of in-situ and ex-situ measurements
- Conclusion

Motivation

Increase hydrogen production

- Increase current density and stack size to decrease footprint and costs
- Mass transport limitation (MTL) is likely to occur at high current densities
- Porous transport layers (PTL) have to transport water, gas and current and are thereby influencing the performance of electrolysis cells
- PTL is also a cost driver¹

Methodology

² Bromberger et al., *International Journal of Hydrogen Energy*, to be published

³ Lickert et al., International Journal of Hydrogen Energy, to be published

Methodology

² Bromberger et al., *International Journal of Hydrogen Energy*, to be published

³ Lickert et al., International Journal of Hydrogen Energy, to be published

Characterised materials

- PTL materials
 - Cathode: Ti powder sinter (b)
 - Anode (1): Ti powder sinter (b)
 - Anode (2): Ti fiber sinter (ac) +Ti mesh (d)

- Test protocol
 - Conditioning procedure for the catalyst coated membrane
 - Polarisation curves (0.1 5 A/cm², 3 min for each operation point)
 - *T*: 40, **60** und **80** °C
 - p: 1, 2, 5, 10 und 30 barg (equalized pressure)
 - \mathbb{Q} (H₂O flow): 0.2, 0.3, 0.4, **0.5**, 0.6, 0.8 l/min

Ex-situ characterization by capillary flow porometry

- PoroluxTM 1000 from Porometer
- Standard method to acquire pore sizes of through pores
 - Largest, smallest pore diameter
 - Mean flow pore diameter
 - Through-plane gas permeability

Development of new characterisation methods New method to receive capillary pressure vs saturation

- Porous sample is saturated using a liquid with very high wettability (POREFILTM)
- Pressure and flow are measured for each sample
- Standard procedure is run several times with decreasing target pressure

Development of new characterisation methods New method to receive capillary pressure vs saturation

- Standard procedure is run several times with decreasing target pressure
- After each run mass of remaining liquid in sample is measured
- Capillary pressure vs saturation relation is received

Development of new characterisation methods

Determination of contact angle in porous media

- CFP is used to determine contact angle using two different liquids:
- high wetting POREFILTM ($\gamma_p = 16 \text{ mN m}^{-1}$) & deionized water ($\gamma_w = 72 \text{ mN m}^{-1}$)
- For both liquids characteristic pore size of PTL must be the same
- Contact angle for highly wetting liquid POREFILTM is 0°
- Equating Washburn's equations result in an equation for water contact angle

$$\frac{d_{Ww} = d_{Pw}}{\frac{4 \cdot \gamma_{Pw} \cdot \cos \theta_{Pw}}{p_{Pw}}} = \frac{4 \cdot \gamma_{Ww} \cdot \cos \theta_{Ww}}{p_{Ww}}$$

$$\theta_{Ww} = cos^{-1} \left[\frac{\gamma_{Pw} \cdot p_{Ww}}{\gamma_{Ww} \cdot p_{Pw}} \right]$$

p: applied pressure d: pore diameter

B: capillary constant γ : surface tension

 θ : contact angle

Comparison of in-situ and ex-situ measurements

Polarisation curves for different PTLs

- Higher temperature leads to reduced voltage
- Mass transport limitation occurs for one PTL

Comparison of in-situ and ex-situ measurements

Polarisation curves for different PTLs

- Higher pressure decreases mass transport limitation effects
- Reduced MTL is probably due to small gas bubbles

Comparison of in-situ and ex-situ measurements New method to receive capillary pressure vs saturation

- Capillary pressure is dependent on PTL morphology and wetting liquid
- PTL with higher capillary pressure tend to have higher MTL @ given i
- Not all samples reach 100% liquid saturation using deionized water

Comparison of in-situ and ex-situ measurements New method to receive capillary pressure vs saturation

- Capillary pressure is dependent on PTL morphology and wetting liquid
- PTL with higher capillary pressure tend to have higher MTL @ given i
- Not all samples reach 100% liquid saturation using deionized water → higher contact angle

PTL	Ti-FS	Ti-PS1	Ti-PS2
contact angle	87.8°	48.7°	55.9°

Conclusion

- New method that grants access to capillary pressure vs. saturation has been developed
- New method that grants access to intrinsic mean contact angle in porous transport layers
- Porous transport layers can lead to mass transport limitation effects depending on the operation point
- Mass transport limitation dependents on capillary pressure of PTL and on operation parameter

Acknowledgements

 All members of the departments "Chemical Energy Storage" at Fraunhofer ISE

The research leading to these results has received funding from

- Fuel Cell and Hydrogen Joint Undertaking (FCH JU)
 - Project MEGASTACK grant agreement n°621233
 - www.megastack.eu

- Project WindGas Hamburg contract n° 03BI110E
- www.windgas-hamburg.com

MEGASTACK

Thanks a lot for your kind attention!

Fraunhofer-Institut für Solare Energiesysteme ISE

Dr. Arne Fallisch

www.ise.fraunhofer.de arne.fallisch@ise.fraunhofer.de